Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India.
Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India.
J Magn Reson. 2022 Jul;340:107236. doi: 10.1016/j.jmr.2022.107236. Epub 2022 May 13.
Band Selective Spectral Spin-Diffusion (BASS-SD) is a method to obtain selective H-H contacts between chemically similar protons within a distance range of 5-6 Å in fully protonated proteins. BASS-SD combines low-amplitude proton spinlock radio frequency (rf) pulses with fast MAS frequency to enable selective polarization exchange in fully protonated molecules. The selectivity of transfer is dictated by the bandwidth of the spinlock pulse and has been used to observe selective H-H, H-Η and H-H correlations. These proton-proton spatial contacts are similar to those observed in perdeuterated samples and serve as useful structural restraints towards de novo protein structure determination. This study employs bimodal Floquet theory to derive the first- and second-order effective Hamiltonians necessary to understand the spin dynamics during BASS-SD. Analytical calculations combined with numerical simulations delineate two different mechanisms for polarization transfer amongst the proton spins. The BASS-SD recoupling condition has been reoptimized to observe selective correlations between chemically different protons (e.g., H-H) while retaining the spatial contacts between chemically similar protons (e.g., H-H). The new BASS-SD condition is integrated with simultaneous and sequential acquisition approaches to generate four different types of structural restraints (H-H, H-Η, H-H, H-H) in one experiment. The approach has been demonstrated on microcrystalline U-[C,N] labeled GB1 protein at ∼ 95-100 kHz MAS.
带选择性谱自旋扩散(BASS-SD)是一种在完全质子化的蛋白质中获取化学相似质子之间距离在 5-6 Å 范围内的选择性 H-H 接触的方法。BASS-SD 将低幅度质子自旋锁定射频(rf)脉冲与快速 MAS 频率相结合,以在完全质子化的分子中实现选择性极化交换。转移的选择性由自旋锁定脉冲的带宽决定,并已用于观察选择性 H-H、H-Η 和 H-H 相关。这些质子-质子空间接触类似于在氘代样品中观察到的接触,并作为从头确定蛋白质结构的有用结构约束。本研究采用双模 Floquet 理论推导出理解 BASS-SD 期间自旋动力学所需的一阶和二阶有效哈密顿量。结合数值模拟的分析计算描绘了两种不同的质子自旋极化转移机制。BASS-SD 重联条件已重新优化,以观察化学不同质子(例如 H-H)之间的选择性相关,同时保留化学相似质子(例如 H-H)之间的空间接触。新的 BASS-SD 条件与同时和顺序采集方法相结合,在一个实验中生成四种不同类型的结构约束(H-H、H-Η、H-H、H-H)。该方法已在∼95-100 kHz MAS 的微结晶 U-[C,N]标记 GB1 蛋白上得到验证。