Suppr超能文献

聚合物接枝结构对密集聚合物连接的胶体颗粒中声本征模形成的作用

Role of Polymer Graft Architecture on the Acoustic Eigenmode Formation in Densely Polymer-Tethered Colloidal Particles.

作者信息

Schneider Dirk, Schmitt Michael, Hui Chin Ming, Sainidou Rebecca, Rembert Pascal, Matyjaszewski Krzysztof, Bockstaller Michael R, Fytas George

机构信息

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States.

出版信息

ACS Macro Lett. 2014 Oct 21;3(10):1059-1063. doi: 10.1021/mz500433h. Epub 2014 Oct 6.

Abstract

The concurrent evaluation of the vibration eigenfrequencies in densely polymer-tethered particle systems ("particle brushes") by Brillouin light scattering and elastodynamic theory reveals a distinctive change of acoustic eigenmode formation associated with polymer graft modification of colloidal particles. The eigenfrequencies of particle brushes reveal a characteristic red-shift compared to uniform core-shell particles that can only be rationalized by assuming imperfect boundary conditions and anisotropic elastic properties of the graft layer. The distinct characteristics of vibration modes in particle brush materials provide direct evidence for the implications of chain confinement on the nanomechanical properties of tethered chains. The results highlight a rich and hitherto unexplored parameter-space for controlling properties and interactions in particle-brush based systems that could spur the development of hybrid materials with novel functionalities.

摘要

通过布里渊光散射和弹性动力学理论对密集聚合物拴系粒子系统(“粒子刷”)中的振动本征频率进行同步评估,揭示了与胶体粒子的聚合物接枝改性相关的声学本征模式形成的显著变化。与均匀的核壳粒子相比,粒子刷的本征频率呈现出特征性的红移,这只能通过假设接枝层的边界条件不完善和弹性性质各向异性来解释。粒子刷材料中振动模式的独特特征为链限制对拴系链纳米力学性质的影响提供了直接证据。结果突出了一个丰富且迄今未被探索的参数空间,用于控制基于粒子刷的系统中的性质和相互作用,这可能会推动具有新型功能的混合材料的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验