Arshad Najla, Laurent-Rolle Maudry, Ahmed Wesam S, Hsu Jack Chun-Chieh, Mitchell Susan M, Pawlak Joanna, Sengupta Debrup, Biswas Kabir H, Cresswell Peter
Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
bioRxiv. 2022 May 17:2022.05.17.492198. doi: 10.1101/2022.05.17.492198.
Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small protein β -microglobulin (β m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8 T lymphocytes that kill infected cells. Many viruses enhance their survival by encoding genes that downregulate MHC-I expression to avoid CD8 T cell recognition. Here we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, downregulate MHC-I expression using distinct mechanisms. One, ORF3a, a viroporin, reduces global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of β m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a novel and specific mechanism that allows immune evasion by SARS-CoV-2.
Viruses may down-regulate MHC class I expression on infected cells to avoid elimination by cytotoxic T cells. We report that the accessory proteins ORF7a and ORF3a of SARS-CoV-2 mediate this function and delineate the two distinct mechanisms involved. While ORF3a inhibits global protein trafficking to the cell surface, ORF7a acts specifically on MHC-I by competing with β m for binding to the MHC-I heavy chain. This is the first account of molecular mimicry of β m as a viral mechanism of MHC-I down-regulation to facilitate immune evasion.
主要组织相容性复合体I类(MHC-I)分子是一种糖基化多态性跨膜重链与小蛋白β2-微球蛋白(β2m)的二聚体,在内质网中结合由细胞蛋白质的胞质周转产生的肽段。在病毒感染的细胞中,这些肽段可能包括源自病毒蛋白的肽段。肽-MHC-I复合物随后通过分泌途径运输,并展示在细胞表面,在那里含有病毒肽段的复合物可以被杀死感染细胞的CD8+ T淋巴细胞检测到。许多病毒通过编码下调MHC-I表达的基因来提高其存活率,以避免被CD8+ T细胞识别。在此,我们报告了正在肆虐的新冠肺炎疫情的病原体严重急性呼吸综合征冠状病毒2(SARS-CoV-2)编码的两种辅助蛋白通过不同机制下调MHC-I表达。一种是ORF3a,一种病毒离子通道蛋白,它减少包括MHC-I在内的蛋白质通过分泌途径的整体运输。另一种是ORF7a,它与MHC-I重链特异性相互作用,作为β2m的分子模拟物来抑制其结合。这减缓了正确组装的MHC-I分子从内质网的输出。我们证明ORF7a降低了人类MHC-I等位基因HLA-A*02:01的抗原呈递。因此,ORF3a和ORF7a都在分泌途径中进行翻译后作用以降低表面MHC-I表达,其中ORF7a展示了一种新的特异性机制,使SARS-CoV-2能够逃避免疫。
病毒可能下调感染细胞上的MHC I类表达以避免被细胞毒性T细胞清除。我们报告SARS-CoV-2的辅助蛋白ORF7a和ORF3a介导了这一功能,并描述了其中涉及的两种不同机制。虽然ORF3a抑制蛋白质向细胞表面的整体运输,但ORF7a通过与β2m竞争结合MHC-I重链而特异性作用于MHC-I。这是首次将β2m的分子模拟作为病毒下调MHC-I以促进免疫逃逸机制的报道。