Suppr超能文献

《清洁水法案》与生物固体:对科罗拉多州生物固体土地应用研究进行的 45 年时间序列回顾。

The Clean Water Act and biosolids: A 45-year chronological review of biosolids land application research in Colorado.

机构信息

Dep. of Soil and Crop Sciences, Colorado State Univ., C127 Plant Sciences Building, Fort Collins, CO, 80523-1170, USA.

出版信息

J Environ Qual. 2022 Sep;51(5):780-796. doi: 10.1002/jeq2.20376. Epub 2022 Jun 23.

Abstract

The 1972 U.S. Clean Water Act set forth the generation of biosolids. In Colorado, biosolids land application research began in 1976 and continues today. Pastureland research suggested that sewage effluent could effectively be land applied to benefit aboveground plant growth and to polish water prior to reaching receiving waters. Forest wildfire-affected ecosystems can also benefit from biosolids applications; application rates of up to 80 Mg ha can lead to greater plant establishment, soil microbial activity, and nutrient turnover and reduced nutrient and heavy metal concentrations in runoff below livestock and USEPA drinking water standards. Long-term (24-yr) observations in oil shale-mined lands showed that biosolids (up to 224 Mg ha ) can have a positive effect on microbial-mediated nutrient cycling and, in turn, on aboveground plant community structure. Biosolids applications of up to 40 Mg ha in high-elevation shrubland ecosystems, dominated by Mo-containing shale deposits, can aid in reducing imbalances between Mo and Cu in soils and plants; excessive plant Mo, when consumed by ruminants, can lead to molybdenosis. Biosolids and lime applications (both at 224 Mg ha ) have been shown to improve long-term reclamation success on acid-generating, heavy metal-containing fluvial mine tailings. Thirty years of grazing land research, focused on soil and aboveground plant benefits, illustrate that soil health and plant productivity can be improved to the greatest extent at biosolids application rates close to 10 Mg ha . Finally, 40 yr of dryland agroecosystem research (a) have helped identify biosolids N fertilizer equivalency (∼8 kg N Mg ) and thus dryland winter wheat application rates (e.g., 4.5-6.7 dry Mg ha ); (b) have identified first-year mineralization rates of 25-32%; (c) dispute the "time bomb" theory by showing that plant metal uptake follows an exponential rise to a maximum; (d) showcase economic return to producers via increased wheat grain protein content; (e) suggest that biosolids-borne proteins and their degradation products are labile C and N sources; (f) have led to long-term tracking of micronutrients and heavy metals in soils and revealed that plants-soil concentrations will not lead to groundwater degradation and that plants are safe for human consumption; and (g) have shown that biosolids provide Zn, helping to overcome soil deficiencies and enhancing Zn biofortification in wheat grain. This latter point is important because ∼2 billion people globally suffer from Zn deficiencies. Forty-five years of research in Colorado have proven that biosolids can enhance environmental quality, improve soil health, and produce healthy food products.

摘要

1972 年美国清洁水法案规定了生物固体的产生。在科罗拉多州,生物固体土地应用研究始于 1976 年,至今仍在继续。牧场研究表明,污水可以有效地进行土地应用,以促进地上植物的生长,并在到达接收水之前对水进行抛光。森林野火影响的生态系统也可以从生物固体的应用中受益;应用率高达 80 Mg ha 可以导致更大的植物建立、土壤微生物活性和养分周转,并减少牲畜和美国环保署饮用水标准以下的径流中的养分和重金属浓度。在油页岩矿区进行的长达 24 年的长期观测表明,生物固体(高达 224 Mg ha )可以对微生物介导的养分循环产生积极影响,从而影响地上植物群落结构。在以含钼页岩沉积物为主的高海拔灌木生态系统中,高达 40 Mg ha 的生物固体应用可以帮助减少土壤和植物中钼和铜之间的不平衡;反刍动物摄入过多的植物钼会导致钼中毒。在产生酸和含有重金属的河流尾矿上,生物固体和石灰的应用(均为 224 Mg ha )已被证明可以提高长期的复垦成功率。30 年的牧场研究侧重于土壤和地上植物的益处,说明了在接近 10 Mg ha 的生物固体应用率下,可以最大程度地提高土壤健康和植物生产力。最后,40 年的旱地农业生态系统研究(a)帮助确定了生物固体 N 肥当量(约 8 kg N Mg ),从而确定了旱地冬小麦的施用量(例如,4.5-6.7 干 Mg ha );(b)确定了第一年的矿化率为 25-32%;(c)通过表明植物金属吸收遵循指数上升到最大值来反驳“定时炸弹”理论;(d)通过增加小麦籽粒蛋白质含量向生产者展示经济回报;(e)表明生物固体携带的蛋白质及其降解产物是不稳定的 C 和 N 来源;(f)导致对土壤中微量元素和重金属的长期跟踪,并表明植物-土壤浓度不会导致地下水退化,并且植物可安全食用;(g)表明生物固体提供 Zn,有助于克服土壤不足并增强小麦籽粒中的 Zn 生物强化。这一点很重要,因为全球约有 20 亿人患有 Zn 缺乏症。科罗拉多州 45 年的研究证明,生物固体可以提高环境质量,改善土壤健康,并生产健康的食品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验