Song Huijie, Fang Zizheng, Jin Binjie, Pan Pengju, Zhao Qian, Xie Tao
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
ACS Macro Lett. 2019 Jun 18;8(6):682-686. doi: 10.1021/acsmacrolett.9b00291. Epub 2019 May 24.
A recently emerged reversible shape memory effect greatly extends the capability of shape memory polymers and their practical potential. Physical confinement and chemical fixation are individually known to be effective in introducing network anisotropy essential for reversible shape memory. Herein, we demonstrate that synergetic combination of these two mechanisms effectively diversifies the shape-shifting behavior. Specifically, we introduce a transesterification catalyst into a network containing two crystalline phases: poly(ε-caprolactone) (PCL) and poly(ω-pentadecalactone) (PPDL). The reversible shape memory behavior of the resulting system can be programmed via the physical confinement by the PPDL phase and the chemical plasticity by the dynamic ester exchange. We illustrate that the two programming mechanisms can operate in a noninterfering way that allows achieving a synergetic benefit, notably realizing a zero-set reversible shape memory behavior. Our study points to a direction in diversifying the behaviors of reversible shape memory polymers and expands the scope for potential engineering devices.
最近出现的可逆形状记忆效应极大地扩展了形状记忆聚合物的能力及其实际应用潜力。物理限制和化学固定各自被认为是引入可逆形状记忆所必需的网络各向异性的有效方法。在此,我们证明这两种机制的协同组合有效地使形状转变行为多样化。具体而言,我们将酯交换催化剂引入包含两个结晶相的网络中:聚(ε-己内酯)(PCL)和聚(ω-十五内酯)(PPDL)。所得体系的可逆形状记忆行为可通过PPDL相的物理限制和动态酯交换的化学可塑性进行编程。我们表明,这两种编程机制可以以不相互干扰的方式运行,从而实现协同效益,特别是实现零设定可逆形状记忆行为。我们的研究指出了使可逆形状记忆聚合物行为多样化的方向,并扩大了潜在工程装置的范围。