Munasinghe Vihanga K, Pancholi Jessica, Manawadu Dilhan, Zhang Zongyao, Beer Paul D
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX13TA, UK.
Department of Chemistry, University of Oxford Physical and Theoretical Chemistry Laboratory, Oxford, OX13QZ, UK.
Chemistry. 2022 Aug 26;28(48):e202201209. doi: 10.1002/chem.202201209. Epub 2022 Jul 6.
A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. H NMR ion-pair titration experiments in CD CN:CDCl solvent mixtures revealed a notable "switch-on" of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.
通过活性金属模板(AMT)方法构建了一系列新型的卤键(XB)和氢键(HB)异二位点[2]轮烷主体体系,并研究了它们协同识别卤化锂(LiX)离子对的能力。在CD₃CN:CDCl₃溶剂混合物中进行的¹H NMR离子对滴定实验表明,在共结合锂阳离子存在的情况下,卤阴离子结合显著“开启”,轮烷主体对LiBr的选择性高于LiI。结果表明,随着互锁腔内整合的卤键供体数量增加,卤化物结合强度大大增加,其中全XB轮烷被发现是LiBr最有效的主体。密度泛函理论(DFT)计算证实了这些发现,确定了LiX离子对的结合模式。值得注意的是,单独使用相应的XB/HB大环未观察到离子对结合,这突出了协同、异二位点、轮烷轴-大环组分机械键效应作为一般离子对识别的有效策略。