Barth Emanuel, Burggraaff Johannes, Srivastava Akash, Winckler Thomas
Friedrich Schiller University Jena, Bioinformatics Core Facility.
Friedrich Schiller University Jena, Chair of RNA Bioinformatics and High Throughput Analysis.
MicroPubl Biol. 2022 Mar 18;2022. doi: 10.17912/micropub.biology.000543. eCollection 2022.
The unicellular eukaryote has a gene-dense haploid genome. This configuration presents mobile elements with the particular challenge of replicating without causing excessive damage to the host through insertional mutagenesis or recombination between repetitive sequences. harbors an active population of the retrotransposon TRE5-A that integrates in a narrow window of ~50 bp upstream of tRNA genes. We assume that this integration preference was developed to avoid the disruption of protein-coding genes. Therefore, we recently mapped new integrations of a genetically tagged TRE5-A element at tRNA genes using PCR-based enrichment of integration junctions. However, the PCR-based enrichment produced several artificial DNA fusions that prevented the mapping of integration sites in unknown places of the genome. Here, we reanalyzed the previous experiment using nanopore sequencing. We summarize the advantages and limitations of direct genome resequencing for the mapping of mobile element integrations.
单细胞真核生物拥有基因密集的单倍体基因组。这种基因组结构给移动元件带来了特殊挑战,即它们在复制时不能通过插入诱变或重复序列间的重组对宿主造成过度损伤。该生物含有活跃的反转录转座子TRE5-A群体,其整合到tRNA基因上游约50 bp的狭窄区域。我们推测这种整合偏好是为避免破坏蛋白质编码基因而形成的。因此,我们最近利用基于PCR的整合连接富集技术,在tRNA基因处绘制了遗传标记的TRE5-A元件的新整合位点。然而,基于PCR的富集产生了一些人工DNA融合体,阻碍了在基因组未知位置绘制整合位点。在此,我们利用纳米孔测序技术重新分析了之前的实验。我们总结了直接基因组重测序在绘制移动元件整合位点方面的优缺点。