Yan Jiebin, Li Jing, Fang Yuming, Che Zhaohui, Xia Xue, Liu Yang
IEEE Trans Image Process. 2022;31:3896-3907. doi: 10.1109/TIP.2022.3177127. Epub 2022 Jun 9.
Free viewpoint videos (FVVs) provide immersive experiences for end-users, and they have been applied in many applications, such as movies, sports, and TV shows. However, the development of quantifying the quality of experience (QoE) of FVVs is still relatively slow due to the high costs of data collection and limited public databases. In this paper, we conduct a comprehensive study on FVV QoE. First, we construct the largest, to the best of our knowledge, FVV QoE database called Youku-FVV from two complex real scenarios, i. e., entertainment and sports. Specifically, Youku-FVV originates from the videos captured by dozens of real cameras arranged annularly. We use these videos to generate virtual viewpoints, which make up FVVs together with real views. In constructing the FVV QoE database, we consider both internal and external influencing factors of QoE, which correspond to FVV generation and playback, respectively. Besides, we make an initial attempt to train an efficient no reference FVV QoE prediction model using this database, where several sparse frame sampling strategies are validated. And we demonstrate the feasibility of striving for the balance between effectiveness and efficiency of FVV QoE prediction. The proposed FVV QoE database and source codes are publicly available at https://github.com/QTJiebin/FVV_QoE.
自由视角视频(FVVs)为终端用户提供沉浸式体验,并且已应用于许多领域,如电影、体育和电视节目。然而,由于数据收集成本高昂且公共数据库有限,自由视角视频体验质量(QoE)量化的发展仍然相对缓慢。在本文中,我们对自由视角视频体验质量进行了全面研究。首先,据我们所知,我们从娱乐和体育这两个复杂的真实场景构建了最大的自由视角视频体验质量数据库——优酷自由视角视频(Youku - FVV)。具体而言,优酷自由视角视频源自数十个环形排列的真实摄像头拍摄的视频。我们使用这些视频生成虚拟视角,这些虚拟视角与真实视角一起构成自由视角视频。在构建自由视角视频体验质量数据库时,我们考虑了体验质量的内部和外部影响因素,它们分别对应自由视角视频的生成和播放。此外,我们首次尝试使用该数据库训练一个高效的无参考自由视角视频体验质量预测模型,并验证了几种稀疏帧采样策略。并且我们证明了在自由视角视频体验质量预测的有效性和效率之间取得平衡的可行性。所提出的自由视角视频体验质量数据库和源代码可在https://github.com/QTJiebin/FVV_QoE上公开获取。