Suppr超能文献

从完整视频到帧:弱监督域自适应连续时间体验质量评估

From Whole Video to Frames: Weakly-Supervised Domain Adaptive Continuous-Time QoE Evaluation.

作者信息

Li Leida, Chen Pengfei, Lin Weisi, Xu Mai, Shi Guangming

出版信息

IEEE Trans Image Process. 2022;31:4937-4951. doi: 10.1109/TIP.2022.3190711. Epub 2022 Jul 22.

Abstract

Due to the rapid increase in video traffic and relatively limited delivery infrastructure, end users often experience dynamically varying quality over time when viewing streaming videos. The user quality-of-experience (QoE) must be continuously monitored to deliver an optimized service. However, modern approaches for continuous-time video QoE estimation require densely annotating the continuous-time QoE labels, which is labor-intensive and time-consuming. To cope with such limitations, we propose a novel weakly-supervised domain adaptation approach for continuous-time QoE evaluation, by making use of a small amount of continuously labeled data in the source domain and abundant weakly-labeled data (only containing the retrospective QoE labels) in the target domain. Specifically, given a pair of videos from source and target domains, effective spatiotemporal segment-level feature representation is first learned by a combination of 2D and 3D convolutional networks. Then, a multi-task prediction framework is developed to simultaneously achieve continuous-time and retrospective QoE predictions, where a quality attentive adaptation approach is investigated to effectively alleviate the domain discrepancy without hampering the prediction performance. This approach is enabled by explicitly attending to the video-level discrimination and segment-level transferability in terms of the domain discrepancy. Experiments on benchmark databases demonstrate that the proposed method significantly improves the prediction performance under the cross-domain setting.

摘要

由于视频流量的快速增长以及相对有限的传输基础设施,终端用户在观看流媒体视频时,其体验质量会随时间动态变化。必须持续监测用户体验质量(QoE)以提供优化的服务。然而,现代的连续时间视频QoE估计方法需要密集标注连续时间的QoE标签,这既费力又耗时。为了应对这些限制,我们提出了一种用于连续时间QoE评估的新型弱监督域适应方法,利用源域中的少量连续标注数据和目标域中丰富的弱标注数据(仅包含回顾性QoE标签)。具体而言,给定一对来自源域和目标域的视频,首先通过二维和三维卷积网络的组合学习有效的时空段级特征表示。然后,开发一个多任务预测框架来同时实现连续时间和回顾性QoE预测,其中研究了一种质量关注适应方法,以有效缓解域差异而不影响预测性能。这种方法通过在域差异方面明确关注视频级别的辨别力和段级别的可迁移性来实现。在基准数据库上的实验表明,所提出的方法在跨域设置下显著提高了预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验