Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany.
Biomacromolecules. 2022 Jun 13;23(6):2219-2235. doi: 10.1021/acs.biomac.2c00223. Epub 2022 May 27.
The polymerization of short-chain alkyl glycidyl ethers (SCAGEs) enables the synthesis of biocompatible polyethers with finely tunable hydrophilicity. Aliphatic polyethers, most prominently poly(ethylene glycol) (PEG), are utilized in manifold biomedical applications due to their excellent biocompatibility and aqueous solubility. By incorporation of short hydrophobic side-chains at linear polyglycerol, control of aqueous solubility and the respective lower critical solution temperature (LCST) in aqueous solution is feasible. Concurrently, the chemically inert character in analogy to PEG is maintained, as no further functional groups are introduced at the polyether structure. Adjustment of the hydrophilicity and the thermoresponsive behavior of the resulting poly(glycidyl ether)s in a broad temperature range is achieved either by the combination of the different SCAGEs or with PEG as a hydrophilic block. Homopolymers of methyl and ethyl glycidyl ether (PGME, PEGE) are soluble in aqueous solution at room temperature. In contrast, -propyl glycidyl ether and -propyl glycidyl ether lead to hydrophobic polyethers. The use of a variety of ring-opening polymerization techniques allows for controlled polymerization, while simultaneously determining the resulting microstructures. Atactic as well as isotactic polymers are accessible by utilization of the respective racemic or enantiomerically pure monomers. Polymer architectures varying from statistical copolymers, di- and triblock structures to star-shaped architectures, in combination with PEG, have been applied in various thermoresponsive hydrogel formulations or polymeric surface coatings for cell sheet engineering. Materials responding to stimuli are of increasing importance for "smart" biomedical systems, making thermoresponsive polyethers with short-alkyl ether side chains promising candidates for future biomaterials.
短链烷基缩水甘油醚(SCAGE)的聚合使得合成具有精细可调亲水性的生物相容性聚醚成为可能。脂肪族聚醚,最突出的是聚乙二醇(PEG),由于其出色的生物相容性和水溶性,在多种生物医学应用中得到了广泛的应用。通过在直链聚甘油上引入短的疏水性侧链,可以控制在水溶液中的水溶性和相应的低临界溶液温度(LCST)。同时,由于在聚醚结构中没有引入其他官能团,因此保持了类似于 PEG 的化学惰性。通过组合不同的 SCAGE 或使用 PEG 作为亲水性嵌段,可以在很宽的温度范围内调整所得聚(缩水甘油醚)的亲水性和温敏行为。甲基缩水甘油醚(PGME)和乙基缩水甘油醚(PEGE)的均聚物在室温下可溶于水溶液。相比之下,-丙基缩水甘油醚和 -丙基缩水甘油醚导致疏水性聚醚。各种开环聚合技术的使用允许进行受控聚合,同时确定所得的微观结构。通过使用相应的外消旋或手性纯单体,可以获得无规和等规聚合物。聚合物结构从统计共聚物、二和三嵌段结构到星形结构,结合 PEG,已应用于各种温敏水凝胶配方或用于细胞片工程的聚合物表面涂层。对刺激做出响应的材料对于“智能”生物医学系统越来越重要,因此具有短烷基醚侧链的温敏聚醚是未来生物材料的有前途的候选物。