Suppr超能文献

机器学习辅助的单原子合金乙炔半加氢催化性能预测

Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation.

作者信息

Feng Haisong, Ding Hu, Wang Si, Liang Yujie, Deng Yuan, Yang Yusen, Wei Min, Zhang Xin

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25288-25296. doi: 10.1021/acsami.2c02317. Epub 2022 May 27.

Abstract

Selective semihydrogenation of acetylene for the production of polymer-grade ethylene is a significant chemical industrial process. Facile activization of acetylene and weak adsorption of ethylene are critical requirements for high-performance catalysis. Single-atom alloys (SAAs) have strong binding effect on acetylene and weak effect on ethylene, which have been regarded as the superior catalysts for acetylene semihydrogenation. Herein, we established a pioneering machine learning (ML) assisted approach to investigate the reaction activity and selectivity of 70 SAA catalysts for acetylene semihydrogenation. As the most desirable ML model, the gradient boosting regression (GBR) algorithm has been extended to predict the energy barrier of *CH ( = 2-4) hydrogenation with a root-mean-square error (RMSE) of only 0.02 eV. Notably, five candidate SAAs with excellent activity and selectivity for acetylene semihydrogenation are screened out via accessible descriptors. These data of ML prediction have been verified by DFT calculation with a high-accuracy (error less than 0.07 eV). This work demonstrates the potential of ML-assisted approach for predicting the energy barrier of transition state and simultaneously provides a convenient approach for the rational design of efficient catalysts.

摘要

乙炔选择性半加氢制聚合级乙烯是一个重要的化工过程。乙炔的易活化和乙烯的弱吸附是高性能催化的关键要求。单原子合金(SAA)对乙炔有强结合作用,对乙烯作用较弱,被认为是乙炔半加氢的优良催化剂。在此,我们建立了一种开创性的机器学习(ML)辅助方法来研究70种用于乙炔半加氢的SAA催化剂的反应活性和选择性。作为最理想的ML模型,梯度提升回归(GBR)算法已被扩展用于预测*CH(=2-4)加氢的能垒,均方根误差(RMSE)仅为0.02 eV。值得注意的是,通过可及描述符筛选出了五种对乙炔半加氢具有优异活性和选择性的候选SAA。这些ML预测数据已通过高精度的密度泛函理论(DFT)计算得到验证(误差小于0.07 eV)。这项工作展示了ML辅助方法在预测过渡态能垒方面的潜力,同时为高效催化剂的合理设计提供了一种便捷方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验