Suppr超能文献

基于部分感知组织的上位范畴化

Superordinate Categorization Based on the Perceptual Organization of Parts.

作者信息

Tiedemann Henning, Schmidt Filipp, Fleming Roland W

机构信息

Department of Experimental Psychology, Justus Liebig University Giessen, 35394 Giessen, Germany.

Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35037 Marburg, Germany.

出版信息

Brain Sci. 2022 May 20;12(5):667. doi: 10.3390/brainsci12050667.

Abstract

Plants and animals are among the most behaviorally significant superordinate categories for humans. Visually assigning objects to such high-level classes is challenging because highly distinct items must be grouped together (e.g., chimpanzees and geckos) while more similar items must sometimes be separated (e.g., stick insects and twigs). As both animals and plants typically possess complex multi-limbed shapes, the perceptual organization of shape into parts likely plays a crucial rule in identifying them. Here, we identify a number of distinctive growth characteristics that affect the spatial arrangement and properties of limbs, yielding useful cues for differentiating plants from animals. We developed a novel algorithm based on shape skeletons to create many novel object pairs that differ in their part structure but are otherwise very similar. We found that particular part organizations cause stimuli to look systematically more like plants or animals. We then generated other 110 sequences of shapes morphing from animal- to plant-like appearance by modifying three aspects of part structure: sprouting parts, curvedness of parts, and symmetry of part pairs. We found that all three parameters correlated strongly with human animal/plant judgments. Together our findings suggest that subtle changes in the properties and organization of parts can provide powerful cues in superordinate categorization.

摘要

植物和动物是对人类而言在行为上最重要的上级类别之一。通过视觉将物体归入此类高级类别具有挑战性,因为必须将极为不同的物品归为一类(例如黑猩猩和壁虎),而有时更相似的物品却必须分开(例如竹节虫和树枝)。由于动物和植物通常都具有复杂的多肢形状,将形状感知组织成各个部分可能在识别它们时起着关键作用。在这里,我们识别出一些独特的生长特征,这些特征会影响肢体的空间排列和属性,从而为区分植物和动物提供有用的线索。我们基于形状骨架开发了一种新颖的算法,以创建许多新颖的物体对,这些物体对在部分结构上有所不同,但在其他方面非常相似。我们发现特定的部分组织会使刺激物看起来在系统上更像植物或动物。然后,我们通过修改部分结构的三个方面:长出的部分、部分的弯曲度和部分对的对称性,生成了另外110个从动物外观向植物外观变形的形状序列。我们发现所有这三个参数都与人类对动物/植物的判断密切相关。我们的研究结果共同表明,部分的属性和组织的细微变化可以在上级分类中提供有力的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9139997/bcb5bf3f29dd/brainsci-12-00667-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验