Villafaina Santos, Biehl-Printes Clarissa, Parraca José A, de Oliveira Brauner Fabiane, Tomas-Carus Pablo
Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Caceres, Spain.
Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Evora, Portugal.
Biology (Basel). 2022 May 4;11(5):704. doi: 10.3390/biology11050704.
This article aims to verify the agreement between the standard method to determine the heart rate achieved in the ventilatory threshold 1 in the cardiopulmonary exercise testing (VT1) and the mathematical models with exercise intensities suggested by the literature in order to check the most precise for fibromyalgia (FM) patients.
Seventeen women with FM were included in this study. The VT1 was used as the standard method to compare four mathematical models applied in the literature to calculate the exercise intensity in FM patients: the well-known "220 - age" at 76%, Tanaka predictive equation "208 - 0.7 × age" at 76%, the FM model HRMax "209 - 0.85 × age" at 76%, and Karvonen Formula at 60%. Bland-Altman analysis and correlation analyses were used to explore agreement and correlation between the standard method and the mathematical models.
Significant correlations between the heart rate at the VT1 and the four mathematical estimation models were observed. However, the Bland-Altman analysis only showed agreement between VT1 and "220 - age" (bias = -114.83 + 0.868 × ; 95% LOA = -114.83 + 0.868 × + 1.96 × 7.46 to -114.83 + 0.868 × - 1.96 × 7.46, where is the average between the heart rate obtained in the CPET at VT1 and "220 - age", in this case 129.15; = 0.519) and "209 - 0.85 × age"(bias = -129.58 + 1.024 × ; 95% LOA = -129.58 + 1.024 × + 1.96 × 6.619 to -129.58 + 1.024 × - 1.96 × 6.619, where is the average between the heart rate obtained in the CPET at VT1 and "209 - 0.85 × age", in this case 127.30; = 0.403).
The well-known predictive equation "220 - age" and the FM model HRMax ("209 - 0.85 × age") showed agreement with the standard method (VT1), revealing that it is a precise model to calculate the exercise intensity in sedentary FM patients. However, proportional bias has been detected in all the mathematical models, with a higher heart rate obtained in CPET than obtained in the mathematical model. The chronotropic incompetence observed in people with FM (inability to increase heart rate with increasing exercise intensities) could explain why methods that tend to underestimate the HRmax in the general population fit better in this population.
本文旨在验证心肺运动试验中确定通气阈值1时所达到心率的标准方法与文献中提出的运动强度数学模型之间的一致性,以检验对纤维肌痛(FM)患者最精确的模型。
本研究纳入了17名患有FM的女性。通气阈值1被用作标准方法,以比较文献中应用的四种数学模型来计算FM患者的运动强度:著名的“220 - 年龄”的76%、田中预测方程“208 - 0.7×年龄”的76%、FM模型心率最大值“209 - 0.85×年龄”的76%以及卡尔沃宁公式的60%。采用布兰德 - 奥特曼分析和相关性分析来探讨标准方法与数学模型之间的一致性和相关性。
观察到通气阈值1时的心率与四种数学估计模型之间存在显著相关性。然而,布兰德 - 奥特曼分析仅显示通气阈值1与“220 - 年龄”(偏差 = -114.83 + 0.868×;95%一致性界限 = -114.83 + 0.868× + 1.96×7.46至 -114.83 + 0.868× - 1.96×7.46,其中是在通气阈值1时的心肺运动试验中获得的心率与“220 - 年龄”之间的平均值,在这种情况下为129.15; = 0.519)以及“209 - 0.85×年龄”(偏差 = -129.58 + 1.024×;95%一致性界限 = -129.58 + 1.024× + 1.96×6.619至 -129.58 + 1.024× - 1.96×6.619,其中是在通气阈值1时的心肺运动试验中获得的心率与“209 - 0.85×年龄”之间的平均值,在这种情况下为127.30; = 0.403)之间具有一致性。
著名的预测方程“220 - 年龄”和FM模型心率最大值(“209 - 0.85×年龄”)与标准方法(通气阈值1)显示出一致性,表明它是计算久坐不动的FM患者运动强度的精确模型。然而,在所有数学模型中均检测到比例偏差,心肺运动试验中获得的心率高于数学模型中获得的心率。在FM患者中观察到的变时性功能不全(无法随着运动强度增加而增加心率)可以解释为什么那些在一般人群中往往低估心率最大值的方法在该人群中更适用。