Suppr超能文献

横截面内在熵——一种全面的股票市场波动率估计器

The Cross-Sectional Intrinsic Entropy-A Comprehensive Stock Market Volatility Estimator.

作者信息

Vințe Claudiu, Ausloos Marcel

机构信息

Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania.

School of Business, Brookfield, University of Leicester, Leicester LE2 1RQ, UK.

出版信息

Entropy (Basel). 2022 Apr 29;24(5):623. doi: 10.3390/e24050623.

Abstract

To take into account the temporal dimension of uncertainty in stock markets, this paper introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy model. The proposed cross-sectional intrinsic entropy () is defined and computed as a daily volatility estimate for the entire market, grounded on the daily traded prices-open, high, low, and close prices (OHLC)-along with the daily traded volume for all symbols listed on The New York Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations (NASDAQ). We perform a comparative analysis between the time series obtained from the and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman-Klass, Rogers-Satchell, Yang-Zhang, and intrinsic entropy (), defined and computed from historical OHLC daily prices of the Standard & Poor's 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respectively, for various time intervals. Our study uses an approximate 6000-day reference point, starting 1 January 2001, until 23 January 2022, for both the NYSE and the NASDAQ. We found that the market volatility estimator is consistently at least 10 times more sensitive to market changes, compared to the volatility estimate captured through the market indices. Furthermore, beta values confirm a consistently lower volatility risk for market indices overall, between 50% and 90% lower, compared to the volatility risk of the entire market in various time intervals and rolling windows.

摘要

为了考虑股票市场不确定性的时间维度,本文引入了一种基于内在熵模型的股票市场波动率横截面估计方法。所提出的横截面内在熵()被定义并计算为整个市场的每日波动率估计值,其依据是纽约证券交易所(NYSE)和美国全国证券交易商协会自动报价系统(NASDAQ)上市的所有股票代码的每日交易价格——开盘价、最高价、最低价和收盘价(OHLC)以及每日交易量。我们对从该模型获得的时间序列与估计器提供的历史波动率进行了比较分析:分别根据标准普尔500指数(S&P500)、道琼斯工业平均指数(DJIA)和纳斯达克综合指数的历史OHLC每日价格定义和计算的收盘价到收盘价、帕金森法、加曼-克拉斯法、罗杰斯-萨切尔法、杨-张法以及内在熵(),用于不同的时间间隔。我们的研究使用了一个大约6000天的参考点,从2001年1月1日开始,到2022年1月23日结束,涵盖纽约证券交易所和纳斯达克。我们发现,与通过市场指数获得的波动率估计相比,该市场波动率估计器对市场变化的敏感度始终至少高10倍。此外,贝塔值证实,在不同的时间间隔和滚动窗口中,市场指数的波动率风险总体上始终较低,比整个市场的波动率风险低50%至90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e804/9141796/d1d9b44b316c/entropy-24-00623-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验