Suppr超能文献

物理缺氧影响多能干细胞的整体和基因特异性甲基化。

Physoxia Influences Global and Gene-Specific Methylation in Pluripotent Stem Cells.

机构信息

The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK.

Department of Biology, College of Science, University of Baghdad, Baghdad 17635, Iraq.

出版信息

Int J Mol Sci. 2022 May 23;23(10):5854. doi: 10.3390/ijms23105854.

Abstract

Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.

摘要

多能干细胞(PSC)具有无限增殖、自我更新和跨所有胚层分化的能力。适当的培养条件对于维持自我更新、多能性、增殖、分化和表观遗传状态非常重要。氧气浓度因细胞位置和与血管化的接近程度而异,存在于不同的人体组织中。基于 PSC 培养的大量研究是在生理上富氧的空气氧气(21%O)环境中进行的,现在有许多报道详细说明了生理常氧(低氧)培养在维持干细胞特性、存活、形态、增殖、分化潜能和表观遗传特征方面的作用。表观遗传机制影响多种细胞特征,包括发育过程中的基因表达和分化细胞中的细胞命运决定。我们假设表观遗传标记对 PSC 及其分化后代的低氧微环境有反应。在这里,我们评估了低氧在 PSC 培养中的作用、DNA 甲基化(5mC(5-甲基胞嘧啶)和 5hmC(5-羟甲基胞嘧啶))的调节以及调节酶 DNMTs 和 TETs 的表达。低氧增强了 PSC 的功能特性,包括增殖、代谢活性和干细胞特性。在低氧中培养的 PSC 显示出 DNMT3B、DNMT3L、TET1 和 TET3 的显著下调,与空气氧气相比,同时伴随着显著降低的 5mC 和 5hmC 水平。DNMT3B 的下调与启动子甲基化的增加有关。与此相关的是,我们还注意到在低氧培养的 PSC 中 HIF1A 减少但 HIF2A 表达增加,与空气氧气相比。总之,PSC 显示出对氧气敏感的甲基化模式,与从头甲基转移酶 DNMT3B 的转录和翻译调节相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb0f/9148100/fad798340b54/ijms-23-05854-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验