Bojko Łukasz, Ryniewicz Anna M, Ryniewicz Wojciech
Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
Department of Dental Prosthodontics and Orthodontics, Faculty of Medicine, Jagiellonian University Medical College, 4 Montelupich Street, 31-155 Krakow, Poland.
Materials (Basel). 2022 May 13;15(10):3497. doi: 10.3390/ma15103497.
The production of fixed prosthetic restorations requires strength identification in terms of cognition and the targeted clinical applications. The aim of the study is to evaluate the static strength in axial tensile and compression tests of titanium and cobalt alloys for the supporting foundations of crowns and bridges produced using Computer Aided Design and Manufacturing (CAD/CAM) technologies: Direct Metal Laser Sintering (DMLS) and milling. The test materials are samples of Ti6Al4V and CoCrMo alloys obtained using digital technologies and, for comparison purposes, CoCrMo samples from traditional casting. For the studied biomedical alloys, , , and were determined in the tensile tests, and in the compression tests , and the stress σ at the adopted deformation threshold. Tensile and compression tests of titanium and cobalt alloys indicate differences in strength parameters resulting from the technology applied. The manufacturing of the structures by DMLS provides the highest stress values that condition elastic deformations for cobalt biomaterials: = 1180 MPa, = 1124 MPa and for titanium biomaterials: = 984 MPa, = 958 MPa. The high resistance to deformation of CoCrMo and Ti6Al4V from DMLS may be beneficial for fixed prosthetic structures subjected to biomechanical stresses in the stomatognathic system and the impact of these structures on the dento-alveolar complex.
固定修复体的制作需要在认知和目标临床应用方面进行强度鉴定。本研究的目的是评估使用计算机辅助设计与制造(CAD/CAM)技术(直接金属激光烧结(DMLS)和铣削)制作的冠桥支撑基台的钛合金和钴合金在轴向拉伸和压缩试验中的静态强度。测试材料是使用数字技术获得的Ti6Al4V和CoCrMo合金样品,为作比较,还有传统铸造的CoCrMo样品。对于所研究的生物医学合金,在拉伸试验中测定了 、 和 ,在压缩试验中测定了 、 以及所采用变形阈值时的应力σ。钛合金和钴合金的拉伸与压缩试验表明,所应用的技术导致强度参数存在差异。通过DMLS制造结构可为钴生物材料提供最高的应力值,这些应力值决定弹性变形:对于钴生物材料, = 1180兆帕, = 1124兆帕;对于钛生物材料, = 984兆帕, = 958兆帕。DMLS工艺制造的CoCrMo和Ti6Al4V具有高抗变形性,这对于口腔颌面部系统中承受生物力学应力的固定修复结构以及这些结构对牙-牙槽复合体的影响可能是有益的。