Suppr超能文献

机器人铣削加工性能中工艺参数的贡献率评估

Contribution Ratio Assessment of Process Parameters on Robotic Milling Performance.

作者信息

Ni Jing, Dai Rulan, Yue Xiaopeng, Zheng Junqiang, Feng Kai

机构信息

School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310005, China.

School of Mechanical Engineering, Hangzhou Dianzi University Information Engineering College, Hangzhou 311305, China.

出版信息

Materials (Basel). 2022 May 16;15(10):3566. doi: 10.3390/ma15103566.

Abstract

Robotic milling has broad application prospects in many processing fields. However, the milling performance of a robot in a certain posture, such as in face milling or grooving tasks, is extremely sensitive to process parameters due to the influence of the serial structure of the robot system. Improper process parameters are prone to produce machining defects such as low surface quality. These deficiencies substantially decrease the further application development of robotic milling. Therefore, this paper selected a certain posture and carried out the robotic flat-end milling experiments on a 7075-T651 high-strength aeronautical aluminum alloy under dry conditions. Milling load, surface quality and vibration were selected to assess the influence of process parameters like milling depth, spindle speed and feed rate on the milling performance. Most notably, the contribution ratio based on the analysis of variance (ANOVA) was introduced to statistically investigate the relation between parameters and milling performance. The obtained results show that milling depth is highly significant in milling load, which had a contribution ratio of 69.25%. Milling depth is also highly significant in vibration, which had a contribution ratio of 51.41% in the X direction, 41.42% in the Y direction and 75.97% in the Z direction. Moreover, the spindle speed is highly significant in surface roughness, which had a contribution ratio of 48.02%. This present study aims to quantitatively evaluate the influence of key process parameters on robotic milling performance, which helps to select reasonable milling parameters and improve the milling performance of the robot system. It is beneficial to give full play to the advantages of robots and present more possibilities of robot applications in machining and manufacturing.

摘要

机器人铣削在许多加工领域具有广阔的应用前景。然而,由于机器人系统串联结构的影响,机器人在特定姿态下(如面铣或开槽任务)的铣削性能对工艺参数极为敏感。工艺参数选择不当容易产生表面质量低等加工缺陷。这些不足极大地阻碍了机器人铣削的进一步应用发展。因此,本文选取了特定姿态,在干式条件下对7075 - T651高强度航空铝合金进行了机器人平底铣削实验。选取铣削载荷、表面质量和振动来评估铣削深度、主轴转速和进给速度等工艺参数对铣削性能的影响。最值得注意的是,引入了基于方差分析(ANOVA)的贡献率,以统计研究参数与铣削性能之间的关系。所得结果表明,铣削深度对铣削载荷的影响高度显著,贡献率为69.25%。铣削深度对振动的影响也高度显著,在X方向的贡献率为51.41%,在Y方向为41.42%,在Z方向为75.97%。此外,主轴转速对表面粗糙度的影响高度显著,贡献率为48.02%。本研究旨在定量评估关键工艺参数对机器人铣削性能的影响,这有助于选择合理的铣削参数并提高机器人系统的铣削性能。有利于充分发挥机器人的优势,为机器人在加工制造中的应用提供更多可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccce/9146190/d4da8d34b3a1/materials-15-03566-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验