Popov Oleksii, Vishnyakov Vladimir
Metal Physics Department, Faculty of Physics, Taras Shevchenko National University of Kyiv, 01033 Kyiv, Ukraine.
SRC "Synthesis", 02161 Kyiv, Ukraine.
Materials (Basel). 2022 May 19;15(10):3641. doi: 10.3390/ma15103641.
A reactive sintering technique with a small addition of carbon (up to 1.9 wt.%) has been used for tungsten powder consolidation. The process allowed procurement of the nonporous and fully densified material at 1300 °C and 30 MPa in 12 min. The SEM and EDX analysis showed that the milling of 5 μm tungsten powder with 0.6, 1.3, and 1.9 wt.% of carbon in a planetary mill led to the formation of the nanostructured mix, which appears to be W-C nanopowder surrounding tungsten grains. X-Ray Diffractometry data indicated tungsten hemicarbide (WC) nucleation during the hot pressing of the milled powders. The exothermic reaction 2W + C → WC occurs during the sintering process and promotes charge densification. The Vickers hardness and indentation toughness of W-1.3 wt.%C composition reached 5.7 GPa and 12.6 MPa∙m, respectively. High toughness and high material densification allow proposing the W-WC for use as a plasma-facing material in fusion applications.
一种添加少量碳(最高1.9 wt.%)的反应烧结技术已被用于钨粉固结。该工艺能够在1300 °C和30 MPa的条件下于12分钟内制得无孔且完全致密的材料。扫描电子显微镜(SEM)和能谱仪(EDX)分析表明,在行星式球磨机中对5μm的钨粉与0.6、1.3和1.9 wt.%的碳进行球磨会导致形成纳米结构混合物,其似乎是围绕钨颗粒的W-C纳米粉末。X射线衍射(XRD)数据表明在球磨粉末的热压过程中会形成碳化钨(WC)晶核。放热反应2W + C → WC在烧结过程中发生,并促进装料致密化。W-1.3 wt.%C成分的维氏硬度和压痕韧性分别达到了5.7 GPa和12.6 MPa∙m。高韧性和高材料致密化使得可以提议将W-WC用作聚变应用中的面向等离子体材料。