Walker Zachary J, Wells Tanner, Belliston Ethan, Romney Sage, Walker Seth B, Sampad Mohammad Julker Neyen, Saiduzzaman S M, Losakul Ravipa, Schmidt Holger, Hawkins Aaron R
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA.
School of Engineering, University of California, Santa Cruz, CA 95064, USA.
Micromachines (Basel). 2022 Apr 30;13(5):721. doi: 10.3390/mi13050721.
We demonstrate a method for fabricating and utilizing an optofluidic particle manipulator on a silicon chip that features a 300 nm thick silicon dioxide membrane as part of a microfluidic channel. The fabrication method is based on etching silicon channels and converting the walls to silicon dioxide through thermal oxidation. Channels are encapsulated by a sacrificial polymer which fills the length of the fluid channel by way of spontaneous capillary action. The sacrificial material is then used as a mold for the formation of a nanoscale, solid-state, silicon dioxide membrane. The hollow channel is primarily used for fluid and particle transport but is capable of transmitting light over short distances and utilizes radiation pressure for particle trapping applications. The optofluidic platform features solid-core ridge waveguides which can direct light on and off of the silicon chip and intersect liquid channels. Optical loss values are characterized for liquid and solid-core structures and at interfaces. Estimates are provided for the optical power needed to trap particles of various sizes.
我们展示了一种在硅芯片上制造和使用光流体粒子操纵器的方法,该芯片具有一个300纳米厚的二氧化硅膜,作为微流体通道的一部分。制造方法基于蚀刻硅通道并通过热氧化将壁转化为二氧化硅。通道由牺牲聚合物封装,该聚合物通过自发的毛细作用填充流体通道的长度。然后将牺牲材料用作形成纳米级固态二氧化硅膜的模具。中空通道主要用于流体和粒子传输,但能够在短距离内传输光,并利用辐射压力进行粒子捕获应用。该光流体平台具有实心脊形波导,可将光引导到硅芯片上和从硅芯片上引导下来,并与液体通道相交。对液体和实心结构以及界面处的光学损耗值进行了表征。提供了捕获各种尺寸粒子所需的光功率估计值。