Intelligent Computing and Communication Systems Lab, Computer Science Department, American University of Culture and Education, Beirut 1507, Lebanon.
Laboratoire des Sciences et Technologies de l'Information, de la Communication et de la Connaissance, ENSTA Bretagne, 29806 Brest, France.
Sensors (Basel). 2022 May 20;22(10):3885. doi: 10.3390/s22103885.
In this paper, we propose a new protocol called LoRaCog to introduce the concept of Cognitive Radio (CR) in the LoRa network. LoRaCog will enable access to a wider spectrum than that of LoRaWAN by using the unutilized spectrum and thus has better efficiency without impacting the end devices' battery consumption. LoRa networks are managed by LoRaWAN protocol and operate on the unlicensed Industrial, Scientific and Medical (ISM) band. LoRaWAN is one of thriving protocols for Low-Power Wide-Area Networks (LPWAN) implemented for the Internet of Things (IoT). With the growing demand for IoT, the unlicensed spectrum is expected to be congested, unlike the licensed spectrum, which is not fully utilized. This can be fairly balanced by applying CR to the LoRa network, where the End Devices (EDs) may change the operating channel opportunistically over the free/available licensed spectrum. Spectrum sensing, channel selection and channel availability relevance become essential features to be respected by the proposed protocol. The main objective of adding CR to LoRaWAN is reducing the congestion and maintaining LoRaWAN's suitability for battery-operated devices. This is achieved by modifying LoRaWAN components such as the ED receive window RX2 rearrangement, spectrum sensing functionality by gateway (GW) for identifying unused channels, and reaching a decision on the unused channels by network server (NS). These changes will create LoRaCog meeting spectrum efficiency and maintain the same level of battery consumption as in LoRaWAN. Numerical simulations show a significant decrease in the rejected packet rate (more than 50%) with LoRaCog when more EDs use cognitive channels. As the results prove, LoRaWAN can reach above 50% rejected packets for the simulated environment versus 24% rejection for LoRaCog using only one additional channel (means total two channels). This means that the system can eliminate rejected packets almost completely when operating over the possible many channels. As well, these results show the flexibility in the system to utilize the available frequencies in an efficient and fair way. The results also reveal that a lower number of GWs is needed for LoRaCog from LoRaWAN to cover the same area.
在本文中,我们提出了一种名为 LoRaCog 的新协议,旨在将认知无线电(CR)的概念引入 LoRa 网络。通过利用未使用的频谱,LoRaCog 将使网络能够访问比 LoRaWAN 更宽的频谱,从而在不影响终端设备电池消耗的情况下提高效率。LoRa 网络由 LoRaWAN 协议管理,在免授权的工业、科学和医疗(ISM)频段上运行。LoRaWAN 是物联网(IoT)中低功耗广域网(LPWAN)的一个热门协议。随着对物联网需求的不断增长,与未充分利用的授权频谱不同,未授权频谱预计会出现拥塞。通过将 CR 应用于 LoRa 网络,可以相当程度地平衡这种情况,在这种网络中,终端设备(ED)可以在空闲/可用的授权频谱上机会地改变工作信道。频谱感知、信道选择和信道可用性相关性成为拟议协议必须尊重的关键特性。将 CR 添加到 LoRaWAN 的主要目的是减少拥塞并保持 LoRaWAN 对电池供电设备的适用性。这是通过修改 LoRaWAN 组件来实现的,例如 ED 接收窗口 RX2 的重新排列、网关(GW)用于识别未使用信道的频谱感知功能,以及网络服务器(NS)对未使用信道做出决策。这些更改将创建 LoRaCog,以提高频谱效率并保持与 LoRaWAN 相同的电池消耗水平。数值模拟表明,当更多的 ED 使用认知信道时,LoRaCog 可以显著降低拒绝包的速率(超过 50%)。结果证明,在模拟环境中,LoRaWAN 可以达到 50%以上的拒绝包率,而使用仅一个额外的信道(即总共两个信道)的 LoRaCog 可以达到 24%的拒绝率。这意味着当系统在可能的多个信道上运行时,可以几乎完全消除拒绝包。同样,这些结果显示了系统在有效和公平地利用可用频率方面的灵活性。结果还表明,与 LoRaWAN 相比,LoRaCog 需要更少的 GW 来覆盖相同的区域。