Suppr超能文献

定制苯乙烯二嵌段聚电解质的合成与组装

Synthesis and Assembly of Designer Styrenic Diblock Polyelectrolytes.

作者信息

Ting Jeffrey M, Wu Hao, Herzog-Arbeitman Abraham, Srivastava Samanvaya, Tirrell Matthew V

机构信息

Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Argonne National Laboratory, Lemont, Illinois 60439, United States.

出版信息

ACS Macro Lett. 2018 Jun 19;7(6):726-733. doi: 10.1021/acsmacrolett.8b00346. Epub 2018 Jun 6.

Abstract

Harnessing molecular design principles toward functional applications of ion-containing macromolecules relies on diversifying experimental data sets of well-understood materials. Here, we report a simple, tunable framework for preparing styrenic polyelectrolytes, using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization in a parallel synthesis approach. A series of diblock polycations and polyanions were RAFT chain-extended from poly(ethylene oxide) (PEO) using (vinylbenzyl)trimethylammonium chloride (PEO--PVBTMA) and sodium 4-styrenesulfonate (PEO--PSS), with varying neutral PEO block lengths, charged styrenic block lengths, and RAFT end-group identity. The materials characterization and kinetics study of chain growth exhibited control of the molar mass distribution for both systems. These block polyelectrolytes were also demonstrated to form polyelectrolyte complex (PEC) driven self-assemblies. We present two simple outcomes of micellization to show the importance of polymer selection from a broadened pool of polyelectrolyte candidates: () uniform PEC-core micelles comprising PEO--PVBTMA and poly(acrylic acid) and () PEC nanoaggregates comprising PEO--PVBTMA and PEO--PSS. The materials characteristics of these charged assemblies were investigated with dynamic light scattering, small-angle X-ray scattering, and cryogenic-transmission electron microscopy imaging. This model synthetic platform offers a straightforward path to expand the design space of conventional polyelectrolytes into gram-scale block polymer structures, which can ultimately enable the development of more sophisticated ionic materials into technology.

摘要

利用分子设计原理实现含离子大分子的功能应用依赖于丰富对已充分理解材料的实验数据集。在此,我们报告了一种简单、可调谐的框架,用于制备苯乙烯类聚电解质,采用平行合成方法中的水相可逆加成-断裂链转移(RAFT)聚合。使用(乙烯基苄基)三甲基氯化铵(PEO--PVBTMA)和4-苯乙烯磺酸钠(PEO--PSS),从聚环氧乙烷(PEO)出发,通过RAFT链扩展制备了一系列二嵌段聚阳离子和聚阴离子,其中中性PEO嵌段长度、带电苯乙烯嵌段长度以及RAFT端基身份各不相同。链增长的材料表征和动力学研究表明,两个体系的摩尔质量分布均得到了控制。这些嵌段聚电解质还被证明能形成聚电解质复合物(PEC)驱动的自组装体。我们展示了胶束化的两个简单结果,以说明从更广泛的聚电解质候选物中选择聚合物的重要性:(1)由PEO--PVBTMA和聚丙烯酸组成的均匀PEC核胶束,以及(2)由PEO--PVBTMA和PEO--PSS组成的PEC纳米聚集体。通过动态光散射、小角X射线散射和低温透射电子显微镜成像对这些带电组装体的材料特性进行了研究。这个模型合成平台为将传统聚电解质的设计空间扩展到克级嵌段聚合物结构提供了一条直接途径,最终能够推动更复杂的离子材料向技术应用发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验