Suppr超能文献

合成聚电解质通过α-溶血素(α-HL)和孔蛋白A(MspA)纳米孔的转位行为。

Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Porin A (MspA) Nanopores.

作者信息

Wang Xiaoqin, Stevens Kaden C, Ting Jeffrey M, Marras Alexander E, Rezvan Gelareh, Wei Xiaojun, Taheri-Qazvini Nader, Tirrell Matthew V, Liu Chang

机构信息

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA.

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Electrochem Soc. 2022 May;169(5). doi: 10.1149/1945-7111/ac6c55. Epub 2022 May 11.

Abstract

DNAs have been used as probes for nanopore sensing of noncharged biomacromolecules due to its negative phosphate backbone. Inspired by this, we explored the potential of diblock synthetic polyelectrolytes as more flexible and inexpensive nanopore sensing probes by investigating translocation behaviors of PEO-b-PSS and PEO-b-PVBTMA through commonly used alpha-hemolysin (α-HL) and porin A (MspA) nanopores. Translocation recordings in different configurations of pore orientation and testing voltage indicated efficient PEO-b-PSS translocations through α-HL and PEO-b-PVBTMA translocations through MspA. This work provides insight into synthetic polyelectrolyte-based probes to expand probe selection and flexibility for nanopore sensing.

摘要

由于DNA的磷酸骨架带负电荷,因此已被用作纳米孔传感不带电生物大分子的探针。受此启发,我们通过研究聚环氧乙烷- b -聚苯乙烯磺酸钠(PEO-b-PSS)和聚环氧乙烷- b -聚(4-乙烯基苄基三甲基氯化铵)(PEO-b-PVBTMA)通过常用的α-溶血素(α-HL)和孔蛋白A(MspA)纳米孔的转位行为,探索了二嵌段合成聚电解质作为更灵活、更廉价的纳米孔传感探针的潜力。在不同孔取向和测试电压配置下的转位记录表明,PEO-b-PSS通过α-HL的转位以及PEO-b-PVBTMA通过MspA的转位是有效的。这项工作为基于合成聚电解质的探针提供了见解,以扩大纳米孔传感的探针选择和灵活性。

相似文献

1
Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Porin A (MspA) Nanopores.
J Electrochem Soc. 2022 May;169(5). doi: 10.1149/1945-7111/ac6c55. Epub 2022 May 11.
3
Preparation of porin A (MspA) nanopores for single molecule sensing of nucleic acids.
Biophys Rep. 2021 Oct 31;7(5):355-364. doi: 10.52601/bpr.2021.210016.
5
Rapid and multiplex preparation of engineered porin A (MspA) nanopores for single molecule sensing and sequencing.
Chem Sci. 2021 Jun 8;12(27):9339-9346. doi: 10.1039/d1sc01399h. eCollection 2021 Jul 14.
6
Mapping Potential Engineering Sites of porin A (MspA) to Form a Nanoreactor.
ACS Sens. 2021 Jun 25;6(6):2449-2456. doi: 10.1021/acssensors.1c00792. Epub 2021 Jun 9.
7
Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porin A (MspA) Nanopore-Trap.
Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23863-23870. doi: 10.1002/anie.202110545. Epub 2021 Oct 1.
8
Hetero-oligomeric MspA pores in Mycobacterium smegmatis.
FEMS Microbiol Lett. 2016 Apr;363(7). doi: 10.1093/femsle/fnw046. Epub 2016 Feb 23.
9
Recent advances in biological nanopores for nanopore sequencing, sensing and comparison of functional variations in MspA mutants.
RSC Adv. 2021 Aug 31;11(46):28996-29014. doi: 10.1039/d1ra02364k. eCollection 2021 Aug 23.
10
A Single-Molecule Observation of Dichloroaurate(I) Binding to an Engineered porin A (MspA) Nanopore.
Anal Chem. 2021 Jan 26;93(3):1529-1536. doi: 10.1021/acs.analchem.0c03840. Epub 2020 Dec 31.

引用本文的文献

2
Classification and applications of nanomaterials diagnosis.
Heliyon. 2024 May 31;10(11):e32314. doi: 10.1016/j.heliyon.2024.e32314. eCollection 2024 Jun 15.
3
Patterning amyloid-β aggregation under the effect of acetylcholinesterase using a biological nanopore - an study.
Sens Actuators Rep. 2023 Dec;6. doi: 10.1016/j.snr.2023.100170. Epub 2023 Jul 8.
4
Quantitation of Circulating Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa.
ACS Nano. 2023 Nov 14;17(21):21093-21104. doi: 10.1021/acsnano.3c04420. Epub 2023 Aug 29.

本文引用的文献

1
Synthesis and Assembly of Designer Styrenic Diblock Polyelectrolytes.
ACS Macro Lett. 2018 Jun 19;7(6):726-733. doi: 10.1021/acsmacrolett.8b00346. Epub 2018 Jun 6.
2
Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era.
Innovation (Camb). 2021 Aug 11;2(4):100153. doi: 10.1016/j.xinn.2021.100153. eCollection 2021 Nov 28.
4
Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor.
Biosens Bioelectron. 2021 Dec 15;194:113588. doi: 10.1016/j.bios.2021.113588. Epub 2021 Aug 28.
5
Single Molecule Ratcheting Motion of Peptides in a Porin A (MspA) Nanopore.
Nano Lett. 2021 Aug 11;21(15):6703-6710. doi: 10.1021/acs.nanolett.1c02371. Epub 2021 Jul 28.
6
Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
Nat Biotechnol. 2021 Nov;39(11):1394-1402. doi: 10.1038/s41587-021-00949-w. Epub 2021 Jul 19.
8
Biosensing of β-Amyloid Peptide Aggregation Dynamics using a Biological Nanopore.
Sens Actuators B Chem. 2021 Jul 1;338. doi: 10.1016/j.snb.2021.129863. Epub 2021 Mar 29.
9
Insight into the effects of electrochemical factors on host-guest interaction induced signature events in a biological nanopore.
Nanotechnol Precis Eng. 2020 Mar;3(1):2-8. doi: 10.1016/j.npe.2019.12.001. Epub 2020 Dec 23.
10
Multiplex quantitative detection of SARS-CoV-2 specific IgG and IgM antibodies based on DNA-assisted nanopore sensing.
Biosens Bioelectron. 2021 Jun 1;181:113134. doi: 10.1016/j.bios.2021.113134. Epub 2021 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验