Suppr超能文献

通过基因工程弹性蛋白样多肽和聚丙烯酸的双重表面修饰制备多功能刺激响应性纤维素纳米晶体

Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid).

作者信息

Malho Jani-Markus, Brand Jérémie, Pecastaings Gilles, Ruokolainen Janne, Gröschel André, Sèbe Gilles, Garanger Elisabeth, Lecommandoux Sébastien

机构信息

Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France.

Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto, Finland.

出版信息

ACS Macro Lett. 2018 Jun 19;7(6):646-650. doi: 10.1021/acsmacrolett.8b00321. Epub 2018 May 18.

Abstract

Cellulose nanocrystals (CNCs) are promising candidates for a myriad of applications; however, successful utilization of CNCs requires balanced and multifunctional properties, which require ever more applied concepts for supramolecular tailoring. We present here a facile and straightforward route to generate dual functional CNCs using poly(acrylic acid) (PAA) and biosynthetic elastin-like polypeptides (ELPs). We utilize thiol-maleimide chemistry and SI-ATRP to harvest the temperature responsiveness of ELPs and pH sensitivity of PAA to confer multifunctionality to CNCs. Cryo-TEM and light microscopy are used to exhibit reversible temperature response, while atomic force microscopy (AFM) provides detailed information on the particle morphology. The approach is tunable and allows variation of the modifying molecules, inspiring supramolecular engineering beyond the currently presented motifs. The surge of genetically engineered peptides adds further possibilities for future exploitation of the potential of cellulose nanomaterials.

摘要

纤维素纳米晶体(CNCs)是众多应用的理想候选材料;然而,要成功利用CNCs需要具备平衡且多功能的特性,这就需要更多用于超分子剪裁的应用概念。我们在此展示了一种简便直接的方法,利用聚丙烯酸(PAA)和生物合成的类弹性蛋白多肽(ELPs)来生成双功能CNCs。我们利用硫醇-马来酰亚胺化学和表面引发原子转移自由基聚合(SI-ATRP)来获取ELPs的温度响应性和PAA的pH敏感性,从而赋予CNCs多功能性。低温透射电子显微镜(Cryo-TEM)和光学显微镜用于展示可逆的温度响应,而原子力显微镜(AFM)则提供有关颗粒形态的详细信息。该方法具有可调性,允许修饰分子发生变化,激发了超越当前所展示基序的超分子工程。基因工程肽的涌现为未来开发纤维素纳米材料的潜力增添了更多可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验