Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA.
Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
Anal Sci. 2022 Jul;38(7):935-940. doi: 10.1007/s44211-022-00128-0. Epub 2022 May 28.
Protein's magic function stems from its structure and various analytical techniques have been developed for it. Among proteins, membrane proteins are encoded 20-30% of genomes, whereas cause challenges for many analytical techniques. For example, lots of membrane proteins cannot form single crystal structure required by X-ray crystallography. As for NMR, the measurements were hindered by the low tumbling rates of membrane (i.e., phospholipid bilayers) where membrane proteins exist. In addition, membrane proteins usually lay parallel to the surface of phospholipid bilayers or form transmembrane structure. No matter parallel or perpendicular to phospholipid bilayers surface, membrane proteins form monolayer structure which is also difficult for X-ray and NMR to provide high-resolution results. Because NMR and X-ray crystallography are the two major analytical techniques to address protein's structure, membrane proteins only contribute 2.4% to the solved protein databank. Surface FT-IR techniques can evaluate the conformation and orientation of membrane proteins by amide I band. Specifically for α-helical peptides/proteins, the orientation of the axis is critical to decide whether proteins form transmembrane structure. Notice that the traditional FT-IR can only provide "low-resolution" results. Here, C isotope was introduced into the nonamyloid component (NAC), which spans residues 61-95 of α-synuclein (α-syn). Then, p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) was used to determine the orientation of a specific residue of α-helical NAC in monolayer. In general, pMAIRS is a novel technique to work complementary with X-ray and NMR to address membrane peptides/proteins structure with high resolution even in monolayer.
蛋白质的神奇功能源于其结构,并且已经开发出各种分析技术来研究它。在蛋白质中,膜蛋白占基因组的 20-30%,但这给许多分析技术带来了挑战。例如,许多膜蛋白无法形成 X 射线晶体学所需的单晶结构。对于 NMR 而言,由于膜(即磷脂双层)中存在的膜蛋白的旋转速率低,测量受到阻碍。此外,膜蛋白通常与磷脂双层的表面平行或形成跨膜结构。无论与磷脂双层表面平行还是垂直,膜蛋白都形成单层结构,这也使得 X 射线和 NMR 难以提供高分辨率的结果。由于 NMR 和 X 射线晶体学是解决蛋白质结构的两种主要分析技术,因此膜蛋白仅占已解决蛋白质数据库的 2.4%。表面傅里叶变换红外(FT-IR)技术可以通过酰胺 I 带评估膜蛋白的构象和取向。具体来说,对于α-螺旋肽/蛋白质,轴的取向对于决定蛋白质是否形成跨膜结构至关重要。请注意,传统的 FT-IR 只能提供“低分辨率”的结果。在这里,我们将 C 同位素引入到非淀粉样成分(NAC)中,该成分跨越α-突触核蛋白(α-syn)的 61-95 个残基。然后,使用 p 偏振多角度入射分辨率光谱(pMAIRS)来确定α-螺旋 NAC 在单层中的特定残基的取向。总的来说,pMAIRS 是一种新颖的技术,可以与 X 射线和 NMR 互补,以高分辨率解决膜肽/蛋白质的结构,甚至在单层中也是如此。