Suppr超能文献

通过综合分析鉴定出一种在非小细胞肺癌中具有强大预测能力的新型缺氧相关基因特征。

A Novel Hypoxia-Related Gene Signature with Strong Predicting Ability in Non-Small-Cell Lung Cancer Identified by Comprehensive Profiling.

作者信息

Yang Huajun, Wang Zhongan, Gong Ling, Huang Guichuan, Chen Daigang, Li Xiaoping, Du Fei, Lin Jiang, Yang Xueyi

机构信息

Xingyi People's Hospital (Department of Respiratory and Critical Medicine, Xingyi Hospital Affiliated to Guizhou Medical University), Xingyi, Guizhou 562400, China.

The First People's Hospital of Zunyi (Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou 563000, China.

出版信息

Int J Genomics. 2022 May 19;2022:8594658. doi: 10.1155/2022/8594658. eCollection 2022.

Abstract

BACKGROUND

Non-small-cell lung cancer (NSCLC) is the most common malignant tumor among males and females worldwide. Hypoxia is a typical feature of the tumor microenvironment, and it affects cancer development. Circular RNAs (circRNAs) have been reported to sponge miRNAs to regulate target gene expression and play an essential role in tumorigenesis and progression. This study is aimed at identifying whether circRNAs could be used as the diagnostic biomarkers for NSCLC.

METHODS

The heterogeneity of samples in this study was assessed by principal component analysis (PCA). Furthermore, the Gene Expression Omnibus (GEO) database was normalized by the affy R package. We further screened the differentially expressed genes (DEGs) and differentially expressed circular RNAs (DEcircRNAs) using the DEseq2 R package. Moreover, we analyzed the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs using the cluster profile R package. Besides, the Gene Set Enrichment Analysis (GSEA) was used to identify the biological function of DEGs. The interaction between DEGs and the competing endogenous RNAs (ceRNA) network was detected using STRING and visualized using Cytoscape. Starbase predicted the miRNAs of target hub genes, and miRanda predicted the target miRNAs of circRNAs. The RNA-seq profiler and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Then, the variables were assessed by the univariate and multivariate Cox proportional hazard regression models. Significant variables in the univariate Cox proportional hazard regression model were included in the multivariate Cox proportional hazard regression model to analyze the association between the variables of clinical features. Furthermore, the overall survival of variables was determined by the Kaplan-Meier survival curve, and the time-dependent receiver operating characteristic (ROC) curve analysis was used to calculate and validate the risk score in NSCLC patients. Moreover, predictive nomograms were constructed and used to predict the prognostic features between the high-risk and low-risk score groups.

RESULTS

We screened a total of 2039 DEGs, including 1293 upregulated DEGs and 746 downregulated DEGs in hypoxia-treated A549 cells. A549 cells treated with hypoxia had a total of 70 DEcircRNAs, including 21 upregulated and 49 downregulated DEcircRNAs, compared to A549 cells treated with normoxia. The upregulated genes were significantly enriched in 284 GO terms and 42 KEGG pathways, while the downregulated genes were significantly enriched in 184 GO terms and 25 KEGG pathways. Moreover, the function analysis by GSEA showed enrichment in the enzyme-linked receptor protein signaling pathway, hypoxia-inducible factor- (HIF-) 1 signaling pathway, and G protein-coupled receptor (GPCR) downstream signaling. Furthermore, six hub modules and 10 hub genes, CDC45, EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5, AURKA, and POLE2, were identified. The ceRNA network was constructed, and it consisted of 4 circRNAs, 14 miRNAs, and 38 mRNAs. The ROC curve was constructed and calculated. The area under the curve (AUC) value was 0.62, and the optimal threshold was 0.28. Based on the optimal threshold, the patients were divided into the high-risk score and low-risk score groups. The survival rate in the high-risk score group was lower than that in the low-risk score group. The expression of SERPINE1, STC2, and LPCAT1; clinical stage; and age of the patient were significantly correlated with the high-risk score. Moreover, nomograms were established based on the risk factors in multivariate analysis, and the median survival time, 3-year survival probability, and 5-year survival were possibly predicted according to nomograms.

CONCLUSION

The ceRNA network associated with NSCLC was identified, and the hub genes, circRNAs, might act as the potential biomarkers for NSCLC.

摘要

背景

非小细胞肺癌(NSCLC)是全球男性和女性中最常见的恶性肿瘤。缺氧是肿瘤微环境的典型特征,它影响癌症的发展。据报道,环状RNA(circRNAs)可作为微小RNA(miRNAs)的海绵,调节靶基因表达,并在肿瘤发生和进展中发挥重要作用。本研究旨在确定circRNAs是否可作为NSCLC的诊断生物标志物。

方法

本研究通过主成分分析(PCA)评估样本的异质性。此外,使用affy R包对基因表达综合数据库(GEO)进行标准化。我们使用DEseq2 R包进一步筛选差异表达基因(DEGs)和差异表达环状RNA(DEcircRNAs)。此外,我们使用cluster profile R包分析DEGs的基因本体(GO)注释和京都基因与基因组百科全书(KEGG)富集情况。此外,基因集富集分析(GSEA)用于鉴定DEGs的生物学功能。使用STRING检测DEGs与竞争性内源RNA(ceRNA)网络之间的相互作用,并使用Cytoscape进行可视化。Starbase预测靶标枢纽基因的miRNAs,而miRanda预测circRNAs的靶标miRNAs。从癌症基因组图谱(TCGA)数据库下载RNA测序分析器和临床信息。然后,通过单变量和多变量Cox比例风险回归模型评估变量。单变量Cox比例风险回归模型中的显著变量被纳入多变量Cox比例风险回归模型,以分析临床特征变量之间的关联。此外,通过Kaplan-Meier生存曲线确定变量的总生存期,并使用时间依赖性受试者工作特征(ROC)曲线分析来计算和验证NSCLC患者的风险评分。此外,构建预测列线图并用于预测高风险和低风险评分组之间的预后特征。

结果

我们共筛选出2039个DEGs,其中在缺氧处理的A549细胞中有1293个上调的DEGs和746个下调的DEGs。与常氧处理的A549细胞相比,缺氧处理的A549细胞共有70个DEcircRNAs,包括21个上调和49个下调的DEcircRNAs。上调基因在284个GO术语和42条KEGG通路中显著富集,而下调基因在184个GO术语和25条KEGG通路中显著富集。此外,GSEA功能分析显示在酶联受体蛋白信号通路、缺氧诱导因子-(HIF-)1信号通路和G蛋白偶联受体(GPCR)下游信号通路中富集。此外,鉴定出6个枢纽模块和10个枢纽基因,即细胞分裂周期蛋白45(CDC45)、核酸外切酶1(EXO1)、 polo样激酶1(PLK1)、复制因子C亚基4(RFC4)、细胞周期蛋白B1(CCNB1)、细胞分裂周期蛋白6(CDC6)、微小染色体维持蛋白10(MCM10)、桥粒相关蛋白5(DLGAP5)、极光激酶A(AURKA)和DNA聚合酶ε催化亚基(POLE2)。构建了ceRNA网络,它由4个circRNAs、14个miRNAs和38个mRNAs组成。构建并计算了ROC曲线。曲线下面积(AUC)值为0.62,最佳阈值为0.28。基于最佳阈值,将患者分为高风险评分组和低风险评分组。高风险评分组的生存率低于低风险评分组。丝氨酸蛋白酶抑制剂E1(SERPINE1)、抑癌素M2(STC2)和溶血磷脂酰胆碱酰基转移酶1(LPCAT1)的表达、临床分期以及患者年龄与高风险评分显著相关。此外,基于多变量分析中的风险因素建立了列线图,并可根据列线图预测中位生存时间、3年生存概率和5年生存率。

结论

鉴定出与NSCLC相关的ceRNA网络,枢纽基因circRNAs可能作为NSCLC的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4915/9135579/bf91cb9de60e/IJG2022-8594658.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验