Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea.
J Am Chem Soc. 2022 Jun 22;144(24):10798-10808. doi: 10.1021/jacs.2c01886. Epub 2022 May 30.
There is an evergrowing demand for environment-friendly processes to synthesize ammonia (NH) from atmospheric nitrogen (N). Although diazotrophic N fixation represents an undeniably "green" process of NH synthesis, the slow reaction rate makes it less suitable for industrially meaningful large-scale production. Here, we report the photoinduced N fixation using a hybrid system composed of colloidal quantum dots (QDs) and aerobic N-fixing bacteria, . Compared to the case where cells are simply mixed with QDs, NH production increases significantly when cells are cultured in the presence of core/shell InP/ZnSe QDs. During the cell culture of , the cellular uptake of QDs is facilitated in the exponential growth phase. Experimental results as well as theoretical calculations indicate that the photoexcited electrons in QDs within cells are directly transferred to MoFe protein, the catalytic component of nitrogenase. We also observe that the excess amount of QDs left on the outer surface of disrupts the cellular membrane, leading to the decrease in NH production due to the deactivation of nitrogenase. The successful uptake of QDs in QD- hybrid with minimal amount of QDs on the outer surface of the bacteria is key to efficient photosensitized NH production. The comprehensive understanding of the QD-bacteria interface paves an avenue to novel and efficient nanobiohybrid systems for chemical production.
人们对利用环保工艺从大气氮(N)合成氨(NH)的需求日益增长。尽管固氮作用代表了一种不可否认的“绿色”NH 合成过程,但由于反应速率较慢,使其不太适合工业上有意义的大规模生产。在这里,我们报告了使用胶体量子点(QD)和需氧固氮细菌的混合系统进行光诱导 N 固定的情况。与简单混合 QD 的情况相比,当在核壳型 InP/ZnSe QD 存在下培养 细胞时,NH 产量会显著增加。在 细胞的培养过程中,在指数生长阶段促进了 QD 的细胞摄取。实验结果和理论计算表明, 细胞内 QD 中的光激发电子直接转移到氮酶的催化组成部分 MoFe 蛋白。我们还观察到,过量的 QD 留在 细胞的外表面会破坏细胞膜,导致由于氮酶失活而 NH 产量下降。在 QD- 混合体中成功摄取 QD 且 QD 在细菌外表面的数量最少,这是高效光敏化 NH 生产的关键。对 QD-细菌界面的全面理解为化学生产的新型高效纳米生物混合系统开辟了道路。