Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
Département de Sciences Biologiques, Université de Québec à Montréal, Canada and GRIL (Interuniversity Research Group in Limnology), Montréal, Canada.
Environ Sci Process Impacts. 2022 Sep 21;24(9):1494-1507. doi: 10.1039/d1em00544h.
Sustained eutrophication of the aquatic environment by the remobilization of legacy phosphorus (P) stored in soils and sediments is a prevailing issue worldwide. Fluxes of P from the sediments to the water column, referred to as internal P loading, often delays the recovery of water quality following a reduction in external P loads. Here, we report on the vertical distribution and geochemistry of P, lanthanum (La), iron (Fe) and carbon (C) in the culturally eutrophied Lake Bromont. This lake underwent remediation treatment using La modified bentonite (LMB) commercially available as Phoslock™. We investigated the effectiveness of LMB in decreasing soluble reactive phosphorus (SRP) availability in sediments and in reducing dissolved fluxes of P across the sediment-water interface. Sediment cores were retrieved before and after LMB treatment at three sites representing bottom sediment, sediment influenced by lakeside housing and finally littoral sediment influenced by the lake inflow. Sequential extractions were used to assess changes in P speciation. Depth profiles of dissolved porewater concentrations were obtained after LMB treatment at each site. Results indicate that SRP extracted from the sediments decreased at all sites, while total extracted P (P) bound to redox-sensitive metal oxides increased. P NMR data on P extract reveals that 20-43% of total solid-phase P is in the form of organic P (P) susceptible to be released microbial degradation. Geochemical modelling of porewater data provides evidence that LaPO mineral phases, such as rhabdophane and/or monazite, are likely forming. However, results also suggest that La binding by dissolved organic carbon (DOC) hinders La-phosphate precipitation. We rely on thermodynamic modelling to suggest that high Fe would bind to DOC instead of La, therefore promoting P sequestrations by LMB under anoxic conditions.
水生环境中由于土壤和沉积物中储存的磷(P)的再移动而导致的持续富营养化是一个世界性的普遍问题。沉积物向水柱中输送的 P 通量,称为内部 P 负荷,通常会延迟水质在外部 P 负荷减少后的恢复。在这里,我们报告了文化富营养化的 Bromont 湖中 P、镧(La)、铁(Fe)和碳(C)的垂直分布和地球化学特征。该湖使用市售的 La 改性膨润土(LMB)(商品名为 Phoslock™)进行了修复处理。我们研究了 LMB 降低沉积物中可溶性反应性磷(SRP)的有效性以及减少溶解磷穿过沉积物-水界面的通量的效果。在 LMB 处理前后,在三个代表底层沉积物、受湖滨房屋影响的沉积物和受湖泊流入影响的滨海沉积物的地点采集了沉积物岩芯。采用连续提取法评估 P 形态的变化。在每个地点进行 LMB 处理后,获得了溶解孔隙水浓度的深度剖面。结果表明,所有地点的沉积物中提取的 SRP 均减少,而与氧化还原敏感金属氧化物结合的总提取 P(P)增加。对 P 提取物的 P NMR 数据分析表明,总固相 P 的 20-43%以易受微生物降解释放的有机 P(P)的形式存在。孔隙水数据的地球化学模拟提供了证据表明,LaPO 矿物相,如针铁矿和/或独居石,可能正在形成。然而,结果还表明,溶解有机碳(DOC)会阻碍 La-磷酸盐的沉淀,从而限制 La 与磷酸盐的结合。我们依赖热力学建模来表明,高 Fe 会与 DOC 结合而不是与 La 结合,因此在缺氧条件下促进 LMB 对 P 的固定。