Suppr超能文献

用于细粒度视觉识别的全局协方差池化的特征值研究

On the Eigenvalues of Global Covariance Pooling for Fine-Grained Visual Recognition.

作者信息

Song Yue, Sebe Nicu, Wang Wei

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3554-3566. doi: 10.1109/TPAMI.2022.3178802. Epub 2023 Feb 3.

Abstract

The Fine-Grained Visual Categorization (FGVC) is challenging because the subtle inter-class variations are difficult to be captured. One notable research line uses the Global Covariance Pooling (GCP) layer to learn powerful representations with second-order statistics, which can effectively model inter-class differences. In our previous conference paper, we show that truncating small eigenvalues of the GCP covariance can attain smoother gradient and improve the performance on large-scale benchmarks. However, on fine-grained datasets, truncating the small eigenvalues would make the model fail to converge. This observation contradicts the common assumption that the small eigenvalues merely correspond to the noisy and unimportant information. Consequently, ignoring them should have little influence on the performance. To diagnose this peculiar behavior, we propose two attribution methods whose visualizations demonstrate that the seemingly unimportant small eigenvalues are crucial as they are in charge of extracting the discriminative class-specific features. Inspired by this observation, we propose a network branch dedicated to magnifying the importance of small eigenvalues. Without introducing any additional parameters, this branch simply amplifies the small eigenvalues and achieves state-of-the-art performances of GCP methods on three fine-grained benchmarks. Furthermore, the performance is also competitive against other FGVC approaches on larger datasets. Code is available at https://github.com/KingJamesSong/DifferentiableSVD.

摘要

细粒度视觉分类(FGVC)具有挑战性,因为难以捕捉类间的细微差异。一条值得注意的研究路线使用全局协方差池化(GCP)层,通过二阶统计量来学习强大的表示,这可以有效地对类间差异进行建模。在我们之前的会议论文中,我们表明截断GCP协方差的小特征值可以获得更平滑的梯度,并提高在大规模基准测试中的性能。然而,在细粒度数据集上,截断小特征值会导致模型无法收敛。这一观察结果与通常的假设相矛盾,即小特征值仅对应于噪声和不重要的信息。因此,忽略它们对性能应该影响不大。为了诊断这种特殊行为,我们提出了两种归因方法,其可视化结果表明,看似不重要的小特征值至关重要,因为它们负责提取有区分力的类特定特征。受此观察结果的启发,我们提出了一个专门用于放大小特征值重要性的网络分支。该分支在不引入任何额外参数的情况下,简单地放大小特征值,并在三个细粒度基准测试中取得了GCP方法的最优性能。此外,在更大的数据集上,该性能与其他FGVC方法相比也具有竞争力。代码可在https://github.com/KingJamesSong/DifferentiableSVD获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验