Suppr超能文献

交织洞察:用于细粒度视觉识别的高阶特征交互

Interweaving Insights: High-Order Feature Interaction for Fine-Grained Visual Recognition.

作者信息

Sikdar Arindam, Liu Yonghuai, Kedarisetty Siddhardha, Zhao Yitian, Ahmed Amr, Behera Ardhendu

机构信息

Department of Computer Science, Edge Hill University, Ormskirk, UK.

Department of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, Israel.

出版信息

Int J Comput Vis. 2025;133(4):1755-1779. doi: 10.1007/s11263-024-02260-y. Epub 2024 Oct 20.

Abstract

This paper presents a novel approach for Fine-Grained Visual Classification (FGVC) by exploring Graph Neural Networks (GNNs) to facilitate high-order feature interactions, with a specific focus on constructing both inter- and intra-region graphs. Unlike previous FGVC techniques that often isolate global and local features, our method combines both features seamlessly during learning via graphs. Inter-region graphs capture long-range dependencies to recognize global patterns, while intra-region graphs delve into finer details within specific regions of an object by exploring high-dimensional convolutional features. A key innovation is the use of shared GNNs with an attention mechanism coupled with the Approximate Personalized Propagation of Neural Predictions (APPNP) message-passing algorithm, enhancing information propagation efficiency for better discriminability and simplifying the model architecture for computational efficiency. Additionally, the introduction of residual connections improves performance and training stability. Comprehensive experiments showcase state-of-the-art results on benchmark FGVC datasets, affirming the efficacy of our approach. This work underscores the potential of GNN in modeling high-level feature interactions, distinguishing it from previous FGVC methods that typically focus on singular aspects of feature representation. Our source code is available at https://github.com/Arindam-1991/I2-HOFI.

摘要

本文提出了一种用于细粒度视觉分类(FGVC)的新方法,通过探索图神经网络(GNN)来促进高阶特征交互,特别关注构建区域间和区域内的图。与以往常常孤立全局和局部特征的FGVC技术不同,我们的方法在学习过程中通过图无缝地结合了这两种特征。区域间的图捕获远程依赖关系以识别全局模式,而区域内的图则通过探索高维卷积特征来深入研究对象特定区域内的更精细细节。一个关键创新是使用带有注意力机制的共享GNN,并结合神经预测的近似个性化传播(APPNP)消息传递算法,提高信息传播效率以获得更好的可辨别性,并简化模型架构以提高计算效率。此外,引入残差连接提高了性能和训练稳定性。全面的实验在基准FGVC数据集上展示了领先的结果,证实了我们方法的有效性。这项工作强调了GNN在建模高级特征交互方面的潜力,使其有别于以往通常专注于特征表示单一方面的FGVC方法。我们的源代码可在https://github.com/Arindam-1991/I2-HOFI获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc55/11953118/dab23248937c/11263_2024_2260_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验