Lutz Jean-François
Université de Strasbourg, CNRS - UPR 22, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France.
ACS Macro Lett. 2020 Feb 18;9(2):185-189. doi: 10.1021/acsmacrolett.9b00938. Epub 2020 Jan 22.
Terrestrial Life is based on polymers. In all known living organisms, DNA stores genetic information, mutates, self-replicates, and guides the synthesis of messenger molecules. Although the function of nucleic acids is well-understood, the development of artificial macromolecular mimics remains very limited. Laboratory-synthesized nucleic acids still support Life, and some nucleic acids analogues exhibit biological functions. Yet, after hundred years of polymer science, no other type of Life-supporting macromolecule (i.e., non-nucleic acids) has ever been reported. In this context, the aim of the present viewpoint is to discuss important challenges that shall be addressed by polymer chemists to achieve artificial Life. Similarly to DNA, an artificial Life-supporting macromolecule shall store information, transfer information, and mutate. Many tools, such as sequence-defined polymer synthesis, polymer modification, supramolecular polymer chemistry, and dynamic chemistry, are already available to chemists to attain these properties. However, the design of artificial Life-supporting macromolecules is hindered by two main factors. First, the chemical search space is enormous, and it is difficult to predict promising structures, even with the help of combinatorial and chemoinformatic tools. Second, rational design is probably a limited approach to achieve macromolecules that shall be involved in nonequilibrium metabolic systems. Hence, a synergic combination of classical polymer chemistry with the more recent field of systems chemistry is probably the key toward the emergence of artificial Life-supporting macromolecules.
陆地生命基于聚合物。在所有已知的生物体中,DNA储存遗传信息、发生突变、自我复制并指导信使分子的合成。尽管核酸的功能已被充分理解,但人工大分子模拟物的发展仍然非常有限。实验室合成的核酸仍然能够维持生命,并且一些核酸类似物具有生物学功能。然而,经过百年的聚合物科学发展,尚未有其他类型的支持生命的大分子(即非核酸)被报道。在此背景下,本观点文章的目的是讨论聚合物化学家为实现人工生命而需要应对的重要挑战。与DNA类似,一种支持人工生命的大分子应能储存信息、传递信息并发生突变。许多工具,如序列定义聚合物合成、聚合物修饰、超分子聚合物化学和动态化学,已经可供化学家使用以实现这些性质。然而,支持人工生命的大分子的设计受到两个主要因素的阻碍。首先,化学搜索空间巨大,即使借助组合化学和化学信息学工具,也难以预测有前景的结构。其次,合理设计可能是实现参与非平衡代谢系统的大分子的一种有限方法。因此,经典聚合物化学与系统化学这一较新领域的协同结合可能是支持人工生命的大分子出现的关键。