Yang Heng, Carlone Luca
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2816-2834. doi: 10.1109/TPAMI.2022.3179463. Epub 2023 Feb 3.
We propose the first general and scalable framework to design certifiable algorithms for robust geometric perception in the presence of outliers. Our first contribution is to show that estimation using common robust costs, such as truncated least squares (TLS), maximum consensus, Geman-McClure, Tukey's biweight, among others, can be reformulated as polynomial optimization problems (POPs). By focusing on the TLS cost, our second contribution is to exploit sparsity in the POP and propose a sparse semidefinite programming (SDP) relaxation that is much smaller than the standard Lasserre's hierarchy while preserving empirical exactness, i.e., the SDP recovers the optimizer of the nonconvex POP with an optimality certificate. Our third contribution is to solve the SDP relaxations at an unprecedented scale and accuracy by presenting [Formula: see text], a solver that blends global descent on the convex SDP with fast local search on the nonconvex POP. Our fourth contribution is an evaluation of the proposed framework on six geometric perception problems including single and multiple rotation averaging, point cloud and mesh registration, absolute pose estimation, and category-level object pose and shape estimation. Our experiments demonstrate that (i) our sparse SDP relaxation is empirically exact with up to 60%- 90% outliers across applications; (ii) while still being far from real-time, [Formula: see text] is up to 100 times faster than existing SDP solvers on medium-scale problems, and is the only solver that can solve large-scale SDPs with hundreds of thousands of constraints to high accuracy; (iii) [Formula: see text] safeguards existing fast heuristics for robust estimation (e.g., [Formula: see text] or Graduated Non-Convexity), i.e., it certifies global optimality if the heuristic estimates are optimal, or detects and allows escaping local optima when the heuristic estimates are suboptimal.
我们提出了首个通用且可扩展的框架,用于设计在存在离群值情况下进行稳健几何感知的可验证算法。我们的第一个贡献是表明,使用常见稳健代价(如截断最小二乘法(TLS)、最大一致性、吉曼 - 麦克卢尔、图基双权等)进行估计可重新表述为多项式优化问题(POPs)。通过关注TLS代价,我们的第二个贡献是利用POP中的稀疏性,并提出一种稀疏半定规划(SDP)松弛方法,该方法比标准的拉塞雷层次结构小得多,同时保持经验精确性,即SDP通过最优性证书恢复非凸POP的优化器。我们的第三个贡献是通过展示[公式:见正文]来以前所未有的规模和精度解决SDP松弛问题,[公式:见正文]是一种求解器,它将凸SDP上的全局下降与非凸POP上的快速局部搜索相结合。我们的第四个贡献是在所提出的框架上对六个几何感知问题进行评估,包括单旋转和多旋转平均、点云与网格配准、绝对姿态估计以及类别级物体姿态和形状估计。我们的实验表明:(i)我们的稀疏SDP松弛在各个应用中对于高达60% - 90%的离群值在经验上是精确的;(ii)虽然仍远未达到实时,但[公式:见正文]在中等规模问题上比现有SDP求解器快达100倍,并且是唯一能够高精度求解具有数十万约束的大规模SDP的求解器;(iii)[公式:见正文]保障了现有的稳健估计快速启发式方法(例如[公式:见正文]或渐进非凸性),即如果启发式估计是最优的,它能证明全局最优性,或者当启发式估计次优时检测并允许逃离局部最优。