Drug Safety Research & Development, Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA.
Medicinal Sciences, Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA.
Toxicol Sci. 2022 Jul 28;188(2):208-218. doi: 10.1093/toxsci/kfac054.
For all the promise of and need for clinical drug-induced liver injury (DILI) risk screening systems, demonstrating the predictive value of these systems versus readily available physicochemical properties and inherent dosing information has not been thoroughly evaluated. Therefore, we utilized a systematic approach to evaluate the predictive value of in vitro safety assays including bile salt export pump transporter inhibition and cytotoxicity in HepG2 and transformed human liver epithelial along with physicochemical properties. We also evaluated the predictive value of in vitro ADME assays including hepatic partition coefficient (Kp) and its unbound counterpart because they provide insight on hepatic accumulation potential. The datasets comprised of 569 marketed drugs with FDA DILIrank annotation (most vs less/none), dose and physicochemical information, 384 drugs with Kp and plasma protein binding data, and 279 drugs with safety assay data. For each dataset and combination of input parameters, we developed random forest machine learning models and measured model performance using the receiver operator characteristic area under the curve (ROC AUC). The median ROC AUC across the various data and parameters sets ranged from 0.67 to 0.77 with little evidence of additive predictivity when including safety or ADME assay data. Subsequent machine learning models consistently demonstrated daily dose, fraction sp3 or ionization, and cLogP/D inputs produced the best, simplest model for predicting clinical DILI risk with an ROC AUC of 0.75. This systematic framework should be used for future assay predictive value assessments and highlights the need for continued improvements to clinical DILI risk annotation.
尽管临床药物性肝损伤 (DILI) 风险筛选系统具有很大的应用前景和必要性,但尚未充分评估这些系统相对于现有理化性质和固有给药信息的预测价值。因此,我们采用系统的方法评估了体外安全测定法的预测价值,包括胆汁盐输出泵转运体抑制和 HepG2 及转化人肝上皮细胞的细胞毒性,以及理化性质。我们还评估了体外 ADME 测定法的预测价值,包括肝分配系数 (Kp) 及其未结合部分,因为它们可以深入了解肝蓄积潜力。数据集包括 569 种具有 FDA DILIrank 注释(大多数 vs 较少/无)、剂量和理化性质信息的上市药物,384 种具有 Kp 和血浆蛋白结合数据的药物,以及 279 种具有安全测定数据的药物。对于每个数据集和输入参数组合,我们开发了随机森林机器学习模型,并使用接收者操作特征曲线下面积 (ROC AUC) 来衡量模型性能。在各种数据和参数集中,ROC AUC 的中位数范围为 0.67 至 0.77,当包括安全或 ADME 测定数据时,预测能力几乎没有增加。随后的机器学习模型一致表明,每日剂量、sp3 分数或离化、和 cLogP/D 输入产生了预测临床 DILI 风险的最佳、最简单的模型,ROC AUC 为 0.75。这个系统的框架应该用于未来的测定预测价值评估,并突出了对临床 DILI 风险注释持续改进的需求。