Suppr超能文献

人工智能/机器学习模型预测小分子药物性肝损伤的严重程度。

AI/ML Models to Predict the Severity of Drug-Induced Liver Injury for Small Molecules.

机构信息

Discovery, Product Development and Supply (DPDS), Preclinical Sciences and Translational Safety (PSTS), Predictive Investigative and Translational Toxicology (PITT), Janssen Pharmaceutical Companies of Johnson and Johnson, La Jolla, California 92121, United States.

Open Analytics, Jupiterstraat 20, 2600 Antwerpen, Belgium.

出版信息

Chem Res Toxicol. 2023 Jul 17;36(7):1129-1139. doi: 10.1021/acs.chemrestox.3c00098. Epub 2023 Jun 9.

Abstract

Drug-induced liver injury (DILI), believed to be a multifactorial toxicity, has been a leading cause of attrition of small molecules during discovery, clinical development, and postmarketing. Identification of DILI risk early reduces the costs and cycle times associated with drug development. In recent years, several groups have reported predictive models that use physicochemical properties or and assay endpoints; however, these approaches have not accounted for liver-expressed proteins and drug molecules. To address this gap, we have developed an integrated artificial intelligence/machine learning (AI/ML) model to predict DILI severity for small molecules using a combination of physicochemical properties and off-target interactions predicted . We compiled a data set of 603 diverse compounds from public databases. Among them, 164 were categorized as Most DILI (M-DILI), 245 as Less DILI (L-DILI), and 194 as No DILI (N-DILI) by the FDA. Six machine learning methods were used to create a consensus model for predicting the DILI potential. These methods include k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), Naïve Bayes (NB), artificial neural network (ANN), logistic regression (LR), weighted average ensemble learning (WA) and penalized logistic regression (PLR). Among the analyzed ML methods, SVM, RF, LR, WA, and PLR identified M-DILI and N-DILI compounds, achieving a receiver operating characteristic area under the curve of 0.88, sensitivity of 0.73, and specificity of 0.9. Approximately 43 off-targets, along with physicochemical properties (, log , basicity, reactive functional groups, and predicted metabolites), were identified as significant factors in distinguishing between M-DILI and N-DILI compounds. The key off-targets that we identified include: PTGS1, PTGS2, SLC22A12, PPARγ, RXRA, CYP2C9, AKR1C3, MGLL, RET, AR, and ABCC4. The present AI/ML computational approach therefore demonstrates that the integration of physicochemical properties and predicted on- and off-target biological interactions can significantly improve DILI predictivity compared to chemical properties alone.

摘要

药物性肝损伤(DILI)被认为是一种多因素毒性,是发现、临床开发和上市后小分子药物淘汰的主要原因。早期识别 DILI 风险可降低药物开发相关的成本和周期时间。近年来,已有几组研究人员报告了使用物理化学性质或测定终点的预测模型;然而,这些方法没有考虑到肝表达蛋白和药物分子。为了解决这一差距,我们开发了一种集成的人工智能/机器学习(AI/ML)模型,该模型使用物理化学性质和预测的非靶点相互作用的组合来预测小分子药物的 DILI 严重程度。我们从公共数据库中编译了一个包含 603 种不同化合物的数据集。其中,164 种被 FDA 归类为最易发生 DILI(M-DILI),245 种为较少发生 DILI(L-DILI),194 种为无 DILI(N-DILI)。六种机器学习方法被用于创建用于预测 DILI 潜力的共识模型。这些方法包括 k-最近邻(k-NN)、支持向量机(SVM)、随机森林(RF)、朴素贝叶斯(NB)、人工神经网络(ANN)、逻辑回归(LR)、加权平均集成学习(WA)和惩罚逻辑回归(PLR)。在分析的 ML 方法中,SVM、RF、LR、WA 和 PLR 鉴定出 M-DILI 和 N-DILI 化合物,其受试者工作特征曲线下面积为 0.88,敏感性为 0.73,特异性为 0.9。约 43 个非靶点,以及物理化学性质(,log ,碱性,反应性官能团和预测的代谢物),被鉴定为区分 M-DILI 和 N-DILI 化合物的重要因素。我们鉴定的关键非靶点包括:PTGS1、PTGS2、SLC22A12、PPARγ、RXRA、CYP2C9、AKR1C3、MGLL、RET、AR 和 ABCC4。因此,本研究中的 AI/ML 计算方法表明,与仅考虑化学性质相比,将物理化学性质与预测的靶点和非靶点生物相互作用相结合,可以显著提高 DILI 的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验