Marston Zachary P D, Cira Theresa M, Knight Joseph F, Mulla David, Alves Tavvs M, Hodgson Erin W, Ribeiro Arthur V, MacRae Ian V, Koch Robert L
Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA.
Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, Saint Paul, MN 55108, USA.
J Econ Entomol. 2022 Oct 12;115(5):1557-1563. doi: 10.1093/jee/toac077.
Spectral remote sensing has the potential to improve scouting and management of soybean aphid (Aphis glycines Matsumura), which can cause yield losses of over 40% in the North Central Region of the United States. We used linear support vector machines (SVMs) to determine 1) whether hyperspectral samples could be classified into treat/no-treat classes based on the economic threshold (250 aphids per plant) and 2) how many wavelengths or features are needed to generate an accurate model without overfitting the data. A range of aphid infestation levels on soybean was created using caged field plots in 2013, 2014, 2017, and 2018 in Minnesota and in 2017 and 2018 in Iowa. Hyperspectral measurements of soybean canopies in each plot were recorded with a spectroradiometer. SVM training and testing were performed using 15 combinations of normalized canopy reflectance at wavelengths of 720, 750, 780, and 1,010 nm. Pairwise Bonferroni-adjusted t-tests of Cohen's kappa values showed four wavelength combinations were optimal, namely model 1 (780 nm), model 2 (780 and 1,010 nm), model 3 (780, 1,010, and 720 nm), and model 4 (780, 1,010, 720, and 750 nm). Model 2 showed the best overall performance, with an accuracy of 89.4%, a sensitivity of 81.2%, and a specificity of 91.6%. The findings from this experiment provide the first documentation of successful classification of remotely sensed spectral data of soybean aphid-induced stress into threshold-based classes.
光谱遥感技术有潜力改进大豆蚜(豆蚜)的监测与管理工作,在美国中北部地区,大豆蚜可造成超过40%的产量损失。我们使用线性支持向量机(SVM)来确定:1)基于经济阈值(每株250头蚜虫),高光谱样本能否被分类为处理/未处理类别;2)生成一个准确模型且不过度拟合数据需要多少波长或特征。2013年、2014年、2017年和2018年在明尼苏达州以及2017年和2018年在爱荷华州,通过在田间设置笼罩地块,营造了一系列大豆蚜不同侵染水平的情况。用光谱辐射仪记录每个地块大豆冠层的高光谱测量数据。使用720、750、780和1010纳米波长处归一化冠层反射率的15种组合进行SVM训练和测试。对科恩kappa值进行两两Bonferroni校正t检验,结果表明四种波长组合是最优的,即模型1(780纳米)、模型2(780和1010纳米)、模型3(780、1010和720纳米)以及模型4(780、1010、720和750纳米)。模型2展现出最佳总体性能,准确率为89.4%,灵敏度为81.2%,特异性为91.6%。本实验结果首次证明了成功将大豆蚜诱导胁迫的遥感光谱数据分类为基于阈值的类别。