Suppr超能文献

基于 SWAT 和 LSTM 的 SSP 情景未来径流模拟中的极值和不确定性差异。

Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios.

机构信息

Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.

Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.

出版信息

Sci Total Environ. 2022 Sep 10;838(Pt 3):156162. doi: 10.1016/j.scitotenv.2022.156162. Epub 2022 May 29.

Abstract

This study compared the performance of Long Short-Term Memory networks (LSTM) and Soil Water Assessment Tool (SWAT) in simulating observed runoff and projecting future runoff using 11 CMIP6 GCMs. The projected runoff was estimated for two Shared Socioeconomic Pathways (SSPs), 2-4.5 and 5-8.5 for near (2021-2060) and far (2061-2100) futures, respectively. The biases in GCM simulated climate variables were corrected using quantile mapping considering observations at 6 weather stations as reference data over the historical period (1985-2014). Five evaluation metrics were used to quantify the GCM's and hydrological models' capability to reconstruct climate variables and runoff in the Yeongsan Basin of South Korea. Uncertainties in LSTM and SWAT simulated runoff for the historical and projected periods were quantified using Bayesian Model Averaging (BMA) and reliability ensemble averaging (REA), respectively. The results showed significant improvement in bias-corrected GCMs in replicating observations in terms of all evaluation metrics. The extreme runoff estimated using general extreme value (GEV) distribution revealed the better capability of LSTM than SWAT in reproducing observed runoff at all gauging locations. The SWAT projected an increase (17.7%) while LSTM projected a decrease (-13.6%) in the future runoff for both SSPs at most locations. The uncertainty in LSTM simulated runoff was lower than in SWAT runoff at all stations for the historical period. However, the uncertainty in SWAT projected runoff was lower than LSTM projected runoff for both SSPs. This study helps assessing the ability of deep-learning versus physically-based models in hydrological modeling and therefore opens new perspectives for hydrological modeling applications.

摘要

本研究比较了长短期记忆网络(LSTM)和土壤水评估工具(SWAT)在模拟观测径流和使用 11 个 CMIP6 GCM 预测未来径流方面的性能。根据两个共享社会经济路径(SSP),即 2-4.5 和 5-8.5,分别对近期(2021-2060 年)和远期(2061-2100 年)的未来径流进行了预测。使用分位数映射法校正了 GCM 模拟气候变量的偏差,该方法考虑了 6 个气象站在历史时期(1985-2014 年)的观测数据作为参考数据。使用了五个评估指标来量化 GCM 和水文模型在重建韩国永川流域气候变量和径流方面的能力。使用贝叶斯模型平均(BMA)和可靠性集合平均(REA)分别量化了 LSTM 和 SWAT 在历史和预测期模拟径流的不确定性。结果表明,在所有评估指标方面,经偏差校正的 GCM 在复制观测值方面都有显著提高。使用广义极值(GEV)分布估计的极端径流表明,LSTM 在复制所有测站观测径流方面的能力优于 SWAT。SWAT 预测在两个 SSP 下未来径流都将增加(17.7%),而 LSTM 预测未来径流都将减少(-13.6%)。在历史时期,LSTM 模拟径流的不确定性在所有站点都低于 SWAT 径流的不确定性。然而,对于两个 SSP,SWAT 预测径流的不确定性都低于 LSTM 预测径流的不确定性。本研究有助于评估深度学习模型与基于物理模型在水文建模中的能力,因此为水文建模应用开辟了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验