Suppr超能文献

神经危重症中生理数据的协调:挑战与前进道路。

Harmonization of Physiological Data in Neurocritical Care: Challenges and a Path Forward.

机构信息

Moberg Analytics, Inc, Philadelphia, PA, USA.

Drexel University, Philadelphia, PA, USA.

出版信息

Neurocrit Care. 2022 Aug;37(Suppl 2):202-205. doi: 10.1007/s12028-022-01524-0. Epub 2022 Jun 1.

Abstract

Continuous multimodal monitoring in neurocritical care provides valuable insights into the dynamics of the injured brain. Unfortunately, the "readiness" of this data for robust artificial intelligence (AI) and machine learning (ML) applications is low and presents a significant barrier for advancement. Harmonization standards and tools to implement those standards are key to overcoming existing barriers. Consensus in our professional community is essential for success.

摘要

神经危重症监护中的连续多模态监测为了解受伤大脑的动态提供了有价值的信息。不幸的是,这些数据在强大的人工智能 (AI) 和机器学习 (ML) 应用方面的“准备就绪”程度较低,这是进一步发展的重大障碍。实施这些标准的协调标准和工具是克服现有障碍的关键。我们专业界的共识对于成功至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验