Suppr超能文献

通过双向深度学习从关键微观结构特征预测和理解动脉弹性。

Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning.

机构信息

Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Acta Biomater. 2022 Jul 15;147:63-72. doi: 10.1016/j.actbio.2022.05.039. Epub 2022 May 25.

Abstract

Microstructural features and mechanical properties are closely related in all soft biological tissues. Both yet exhibit considerable inter-individual differences and are affected by factors such as aging and disease and its progression. Histological analysis, modern in situ imaging, and biomechanical testing have deepened our understanding of these complex interrelations, yet two key questions remain: (1) Given the specific microstructure, can one predict the macroscopic mechanical properties without mechanical testing? (2) Can one quantify individual contributions of the different microstructural features to the macroscopic mechanical properties in an automated, systematic and largely unbiased way? Here we propose a bidirectional deep learning architecture to address these two questions. Our architecture uses data from standard histological analyses, two-photon microscopy and biaxial biomechanical testing. Its capabilities are demonstrated by predicting with high accuracy (R=0.92) the evolving mechanical properties of the murine aorta during maturation and aging. Moreover, our architecture reveals that the extracellular matrix composition and organization are the most prominent factors governing the macroscopic mechanical properties of the tissues studied herein. STATEMENT OF SIGNIFICANCE: We present a physics-informed machine learning architecture that can predict macroscopic mechanical properties of arterial tissue with high accuracy (R2=0.92) from the tissue microstructure (characterized by imaging data). For the first time, this architecture enables also a fully automatic and largely unbiased quantification of the relevance of different microstructural features (such as collagen volume fraction and fiber straightness) for the macroscopic mechanical properties. This approach opens up unprecedented ways to predictive mechanical modeling of soft biological tissues. Moreover, it provides quantitative insights into the relation between tissue microstructure and its macroscopic properties that promise to play an important role in future tissue engineering.

摘要

所有软生物组织的微观结构特征和力学性能都密切相关。两者都表现出相当大的个体差异,并受到衰老、疾病及其进展等因素的影响。组织学分析、现代原位成像和生物力学测试加深了我们对这些复杂相互关系的理解,但仍有两个关键问题悬而未决:(1)给定特定的微观结构,能否在不进行力学测试的情况下预测宏观力学性能?(2)能否以自动化、系统且基本无偏的方式定量确定不同微观结构特征对宏观力学性能的个体贡献?在这里,我们提出了一种双向深度学习架构来解决这两个问题。我们的架构使用来自标准组织学分析、双光子显微镜和双轴生物力学测试的数据。其功能通过高精度(R=0.92)预测小鼠主动脉在成熟和衰老过程中的机械性能演变来证明。此外,我们的架构揭示了细胞外基质组成和组织是控制本文研究组织宏观力学性能的最重要因素。

意义声明

我们提出了一种物理信息机器学习架构,可以从组织微观结构(通过成像数据进行表征)高精度(R2=0.92)预测动脉组织的宏观力学性能。该架构首次能够全自动且基本无偏地量化不同微观结构特征(如胶原体积分数和纤维直度)对宏观力学性能的相关性。这种方法为软生物组织的预测力学建模开辟了前所未有的途径。此外,它提供了对组织微观结构与其宏观性能之间关系的定量见解,有望在未来的组织工程中发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验