Suppr超能文献

基于客观性和主观性的自注意力机制进行情感建模。

Modelling sentiments based on objectivity and subjectivity with self-attention mechanisms.

机构信息

Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia.

Faculty of Engineering, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia.

出版信息

F1000Res. 2021 Oct 4;10:1001. doi: 10.12688/f1000research.73131.2. eCollection 2021.

Abstract

The proliferation of digital commerce has allowed merchants to reach out to a wider customer base, prompting a study of customer reviews to gauge service and product quality through sentiment analysis. Sentiment analysis can be enhanced through subjectivity and objectivity classification with attention mechanisms. : This research includes input corpora of contrasting levels of subjectivity and objectivity from different databases to perform sentiment analysis on user reviews, incorporating attention mechanisms at the aspect level. Three large corpora are chosen as the subjectivity and objectivity datasets, the Shopee user review dataset (ShopeeRD) for subjectivity, together with the Wikipedia English dataset (Wiki-en) and Internet Movie Database (IMDb) for objectivity. Word embeddings are created using Word2Vec with Skip-Gram. Then, a bidirectional LSTM with an attention layer (LSTM-ATT) imposed on word vectors. The performance of the model is evaluated and benchmarked against classification models of Logistics Regression (LR) and Linear SVC (L-SVC). Three models are trained with subjectivity (70% of ShopeeRD) and the objectivity (Wiki-en) embeddings, with ten-fold cross-validation. Next, the three models are evaluated against two datasets (IMDb and 20% of ShopeeRD). The experiments are based on benchmark comparisons, embedding comparison and model comparison with 70-10-20 train-validation-test splits. Data augmentation using AUG-BERT is performed and selected models incorporating AUG-BERT, are compared. L-SVC scored the highest accuracy with 56.9% for objective embeddings (Wiki-en) while the LSTM-ATT scored 69.0% on subjective embeddings (ShopeeRD).  Improved performances were observed with data augmentation using AUG-BERT, where the LSTM-ATT+AUG-BERT model scored the highest accuracy at 60.0% for objective embeddings and 70.0% for subjective embeddings, compared to 57% (objective) and 69% (subjective) for L-SVC+AUG-BERT, and 56% (objective) and 68% (subjective) for L-SVC. : Utilizing attention layers with subjectivity and objectivity notions has shown improvement to the accuracy of sentiment analysis models.

摘要

数字商务的繁荣使得商家能够接触到更广泛的客户群体,这促使人们通过情感分析来研究客户评论,以衡量服务和产品质量。通过使用注意力机制进行主观性和客观性分类,可以增强情感分析。本研究包括来自不同数据库的具有不同主观性和客观性水平的输入语料库,以在用户评论上执行情感分析,并在方面级别上使用注意力机制。选择了三个大型语料库作为主观性和客观性数据集,Shopee 用户评论数据集(ShopeeRD)用于主观性,同时使用维基百科英语数据集(Wiki-en)和互联网电影数据库(IMDb)用于客观性。使用带有 Skip-Gram 的 Word2Vec 创建单词嵌入。然后,将注意力层施加到单词向量上的双向 LSTM(LSTM-ATT)。评估模型的性能,并与物流回归(LR)和线性 SVC(L-SVC)的分类模型进行基准测试。使用主观性(ShopeeRD 的 70%)和客观性(Wiki-en)嵌入训练三个模型,并进行十折交叉验证。接下来,将三个模型评估两个数据集(IMDb 和 ShopeeRD 的 20%)。实验基于基准比较、嵌入比较和具有 70-10-20 训练-验证-测试分割的模型比较。使用 AUG-BERT 进行数据扩充,并比较选择的包含 AUG-BERT 的模型。L-SVC 在客观嵌入(Wiki-en)上获得了 56.9%的最高准确性,而 LSTM-ATT 在主观嵌入(ShopeeRD)上获得了 69.0%的准确性。使用 AUG-BERT 进行数据扩充后,性能得到了提高,其中 LSTM-ATT+AUG-BERT 模型在客观嵌入上的准确性最高,为 60.0%,在主观嵌入上的准确性为 70.0%,而 L-SVC+AUG-BERT 的准确率分别为 57%(客观)和 69%(主观),L-SVC 的准确率分别为 56%(客观)和 68%(主观)。利用主观性和客观性概念的注意力层提高了情感分析模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9130797/ad71f28a8478/f1000research-10-134045-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验