Suppr超能文献

基于斯托克斯分解的水下图像复原

Underwater image restoration via Stokes decomposition.

作者信息

Li Xiaobo, Xu Jianuo, Zhang Liping, Hu Haofeng, Chen Shih-Chi

出版信息

Opt Lett. 2022 Jun 1;47(11):2854-2857. doi: 10.1364/OL.457964.

Abstract

In this Letter, we present a Stokes imaging-based method to restore objects and enhance image contrast in turbid water. In the system, a light source illuminates the objects with two orthometric polarization states; based on a new Stokes decomposition model, the recorded images are converted to Stokes maps and subsequently restored to a clear image, free of reflections and scattered lights. A mathematical model has been developed to explain the Stokes decomposition and how the undesired reflections and scattered lights are rejected. Imaging experiments have been devised and performed on different objects, e.g., metals and plastics, under different turbidities. The results demonstrate enhanced image quality and capability to distinguish polarization differences. This new, to the best of our knowledge, method can be readily applied to practical underwater object detection and potentially realize clear vision in other scattering media.

摘要

在本信函中,我们提出了一种基于斯托克斯成像的方法,用于在浑浊水中恢复物体并增强图像对比度。在该系统中,光源以两种正交偏振态照射物体;基于一种新的斯托克斯分解模型,记录的图像被转换为斯托克斯图,随后恢复为清晰图像,无反射光和散射光。已开发出一个数学模型来解释斯托克斯分解以及如何去除不需要的反射光和散射光。已设计并针对不同物体(如金属和塑料)在不同浑浊度条件下进行了成像实验。结果表明图像质量得到了提高,并且有能力区分偏振差异。据我们所知,这种新方法可轻松应用于实际水下物体检测,并有可能在其他散射介质中实现清晰成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验