School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China.
Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China.
Anal Chem. 2022 Jun 14;94(23):8174-8180. doi: 10.1021/acs.analchem.1c05545. Epub 2022 Jun 1.
Raman spectroscopy facilitates the study of reacting molecules on single nanomaterials. In recent years, the temporal resolution of Raman spectral measurement has been remarkably reduced to the millisecond level. However, the classic scan-based imaging mode limits the application in the dynamical study of reactions at multiple nanostructures. In this paper, we propose a spatiotemporal-resolved Raman spectroscopy (STRS) technology to achieve fast (∼40 ms) and high spatial resolution (∼300 nm) hyperspectral Raman imaging of single nanostructures. With benefits of the outstanding electromagnetic field enhancement factor by surface plasmon resonance (∼10) and the snapshot hyperspectral imaging strategy, we demonstrate the observation of stepwise Raman signals from single-particle plasmon-assisted reactions. Results reveal that the reaction kinetics is strongly affected by not only the surface plasmon-polariton generation but also the density of Raman molecules. In consideration of the spatiotemporal resolving capability of STRS, we anticipate that it provides a potential platform for further extending the application of Raman spectroscopy methods in the dynamic study of 1D or 2D nanostructures.
拉曼光谱有助于研究单纳米材料上的反应分子。近年来,拉曼光谱测量的时间分辨率已显著降低到毫秒级。然而,经典的基于扫描的成像模式限制了在多个纳米结构的反应动力学研究中的应用。在本文中,我们提出了一种时空分辨拉曼光谱(STRS)技术,以实现单纳米结构的快速(∼40 ms)和高空间分辨率(∼300nm)高光谱拉曼成像。得益于表面等离激元共振(∼10)产生的优异电磁场增强因子和快照高光谱成像策略,我们观察到了单粒子等离子体辅助反应的逐步拉曼信号。结果表明,反应动力学不仅受表面等离激元产生的影响,还受拉曼分子密度的影响。考虑到 STRS 的时空分辨能力,我们预计它为进一步扩展拉曼光谱方法在一维或二维纳米结构的动态研究中的应用提供了一个潜在的平台。