Suppr超能文献

Machine learning for a finite size correction in periodic coupled cluster theory calculations.

作者信息

Weiler Laura, Mihm Tina N, Shepherd James J

机构信息

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

J Chem Phys. 2022 May 28;156(20):204109. doi: 10.1063/5.0086580.

Abstract

We introduce a straightforward Gaussian process regression (GPR) model for the transition structure factor of metal periodic coupled cluster singles and doubles (CCSD) calculations. This is inspired by the method introduced by Liao and Grüneis for interpolating over the transition structure factor to obtain a finite size correction for CCSD [K. Liao and A. Grüneis, J. Chem. Phys. 145, 141102 (2016)] and by our own prior work using the transition structure factor to efficiently converge CCSD for metals to the thermodynamic limit [Mihm et al., Nat. Comput. Sci. 1, 801 (2021)]. In our CCSD-FS-GPR method to correct for finite size errors, we fit the structure factor to a 1D function in the momentum transfer, G. We then integrate over this function by projecting it onto a k-point mesh to obtain comparisons with extrapolated results. Results are shown for lithium, sodium, and the uniform electron gas.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验