College of Chemistry, Sichuan University, Chengdu 610064, China.
J Chem Phys. 2022 May 28;156(20):204901. doi: 10.1063/5.0090427.
A deep understanding for collective behavior in an active matter system with complex interactions has far-reaching impact in biology. In the present work, we adopt Langevin dynamics simulations to investigate diffusion dynamics and phase separation in an anisotropic active particle system with a tunable biased angle α defined as the deviation between the active force direction and anisotropic orientation. Our results demonstrate that the biased angle can induce super-rotational diffusion dynamics characterized by a power-law relationship between the mean square angle displacement (MSAD) and the time interval Δt in the form of MSAD ∼ Δt with β > 1 and also result in non-trivial phase separation kinetics. As activity is dominant, nucleation time shows a non-monotonic dependence on the biased angle. Moreover, there arises a distinct transition of phase separation, from spinodal decomposition without apparent nucleation time to binodal decomposition with prominent nucleation delay. A significant inhibition effect occurs at right and obtuse angles, where the remarkable super-rotational diffusion prevents particle aggregation, leading to a slow nucleation process. As active force is competitive to anisotropic interactions, the system is almost homogeneous, while, intriguingly, we observe a re-entrant phase separation as a small acute angle is introduced. The prominent super-rotational diffusion under small angles provides an optimum condition for particle adsorption and cluster growth and, thus, accounts for the re-entrance of phase separation. A consistent scenario for the physical mechanism of our observations is achieved by properly considering the modulation of the biased angle on the interplay between activity and anisotropic interactions.
对具有复杂相互作用的主动物质系统中的集体行为有深入的了解,对生物学有深远的影响。在目前的工作中,我们采用朗之万动力学模拟来研究各向异性活性粒子系统中的扩散动力学和相分离,该系统具有可调谐的偏心角α,定义为活性力方向与各向异性方向之间的偏差。我们的结果表明,偏心角可以诱导超旋转扩散动力学,其特征是平均平方角位移(MSAD)与时间间隔Δt之间的幂律关系为 MSAD∼Δt,其中β>1,并且还导致非平凡的相分离动力学。随着活性的主导作用,成核时间与偏心角呈非单调关系。此外,相分离出现明显的转变,从没有明显成核时间的旋节线分解转变为具有明显成核延迟的双节线分解。在右角和钝角处会出现明显的抑制效应,显著的超旋转扩散阻止了粒子聚集,导致成核过程缓慢。由于活性力与各向异性相互作用竞争,系统几乎是均匀的,然而,令人惊讶的是,当引入一个小锐角时,我们观察到一个再进入的相分离。在小角度下显著的超旋转扩散为粒子吸附和聚集体生长提供了最佳条件,因此解释了相分离的再进入。通过适当考虑偏心角对活性和各向异性相互作用相互作用的调制,可以得出我们观察结果的物理机制的一致情景。