Asaad Mina, Joubert-Doriol Loïc, Izmaylov Artur F
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France.
J Chem Phys. 2022 May 28;156(20):204121. doi: 10.1063/5.0087797.
Application of the time-dependent variational principle to a linear combination of frozen-width Gaussians describing the nuclear wavefunction provides a formalism where the total energy is conserved. The computational downside of this formalism is that trajectories of individual Gaussians are solutions of a coupled system of differential equations, limiting implementation to serial propagation algorithms. To allow for parallelization and acceleration of the computation, independent trajectories based on simplified equations of motion were suggested. Unfortunately, within practical realizations involving finite Gaussian bases, this simplification leads to breaking the energy conservation. We offer a solution for this problem by using Lagrange multipliers to ensure the energy and norm conservation regardless of basis function trajectories or basis completeness. We illustrate our approach within the multi-configurational Ehrenfest method considering a linear vibronic coupling model.
将含时变分原理应用于描述核波函数的固定宽度高斯函数的线性组合,可提供一种总能量守恒的形式体系。这种形式体系的计算缺点在于,单个高斯函数的轨迹是一个微分方程耦合系统的解,这限制了其只能采用串行传播算法来实现。为了实现并行化并加速计算,人们提出了基于简化运动方程的独立轨迹。不幸的是,在涉及有限高斯基的实际实现中,这种简化会导致能量守恒被破坏。我们通过使用拉格朗日乘子来解决这个问题,以确保无论基函数轨迹或基的完备性如何,能量和范数都守恒。我们在考虑线性振子 - 电子耦合模型的多组态埃伦费斯特方法中阐述了我们的方法。