Tahmasebipour Amir, Begley Matthew, Meinhart Carl
Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA.
Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA.
J Acoust Soc Am. 2022 May;151(5):3083. doi: 10.1121/10.0010418.
This work presents three-dimensional (3D) numerical analysis of acoustic radiation force on an elastic microsphere suspended in a viscous fluid. Acoustophoresis of finite-sized, neutrally buoyant, nearly incompressible soft particles may improve by orders of magnitude and change directions when going through resonant vibrations. These findings offer the potential to manipulate and separate microparticles based on their resonance frequency. This concept has profound implications in cell and microparticle handling, 3D printing, and enrichment in lab-on-chip applications. The existing analytical body of work can predict spheroidal harmonics of an elastic sphere and acoustic radiation force based on monopole and dipole scatter in an ideal fluid. However, little attention is given to the complex interplay of resonant fluid and solid bodies that generate acoustic radiation. The finite element method is used to find resonant modes, damping factors, and acoustic forces of an elastic sphere subject to a standing acoustic wave. Under fundamental spheroidal modes, the radiation force fluctuates significantly around analytical values due to constructive or destructive scatter-incident wave interference. This suggests that for certain materials, relevant to acoustofluidic applications, particle resonances are an important scattering mechanism and design parameter. The 3D model may be applied to any number of particles regardless of geometry or background acoustic field.
本文对悬浮在粘性流体中的弹性微球上的声辐射力进行了三维数值分析。有限尺寸、中性浮力、几乎不可压缩的软颗粒的声泳在经历共振振动时,其效率可能会提高几个数量级并改变方向。这些发现为基于微颗粒的共振频率对其进行操控和分离提供了可能性。这一概念在细胞和微颗粒处理、3D打印以及芯片实验室应用中的富集方面具有深远意义。现有的分析工作可以基于理想流体中的单极子和偶极子散射来预测弹性球体的球谐函数和声辐射力。然而,对于产生声辐射的共振流体和固体之间复杂的相互作用关注较少。采用有限元方法来求解受驻波作用的弹性球体的共振模式、阻尼因子和声力。在基本球谐模式下,由于散射波与入射波的相长或相消干涉,辐射力在解析值附近显著波动。这表明对于与声流体应用相关的某些材料,颗粒共振是一种重要的散射机制和设计参数。该三维模型可应用于任意数量的颗粒,而无需考虑其几何形状或背景声场。