Karlsen Jonas T, Bruus Henrik
Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043010. doi: 10.1103/PhysRevE.92.043010. Epub 2015 Oct 12.
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.
我们对悬浮在粘性和热传导流体介质中的单个小球形颗粒(热粘性流体微滴或热弹性固体颗粒)上的声辐射力进行了理论分析。在微扰假设下,我们的分析对粘性和热边界层厚度δ(s)和δ(t)相对于颗粒半径a的长度尺度没有限制,但假设颗粒相对于声波波长λ较小。这是与纳米级和微米级颗粒的超声波散射相关的极限情况。对于尺寸与边界层相当或小于边界层的颗粒,热粘性理论对声辐射力产生了深远影响。我们不仅预测到的力比理想流体理论预期的大几个数量级,而且对于某些相关的材料选择,我们还发现不同尺寸但其他方面相同的颗粒上的声辐射力会发生符号变化。这些发现引出了颗粒尺寸依赖的声泳对比度因子的概念,这与气体中微粒的声分离以及芯片实验室系统中纳米颗粒的处理高度相关。