Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA.
Chaos. 2022 May;32(5):053113. doi: 10.1063/5.0086905.
The largest eigenvalue of the matrix describing a network's contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
描述网络接触结构的矩阵的最大特征值通常在预测动力过程的行为方面很重要。我们将这一概念扩展到超图,并提出了一个类似的特征值,即扩展特征值,用于超图动力过程。我们使用平均场方法,根据无关联超图的度序列推导出扩展特征值的一个近似。我们引入了一个包含度关联的超图生成模型,并使用微扰方法推导出关联超图的扩展特征值的一个近似。我们定义了动力关联度,这是一种对一致超图的动态关联度的合理定义,并描述了通过优先重连降低超图的动力关联度如何能扑灭流行病。我们使用合成数据集和经验数据集验证了我们的结果。