Suppr超能文献

高阶网络的单纯性。

The simpliciality of higher-order networks.

作者信息

Landry Nicholas W, Young Jean-Gabriel, Eikmeier Nicole

机构信息

Vermont Complex Systems Center, University of Vermont, 82 Innovation PI, 05405 Burlington, USA.

Department of Mathematics and Statistics, University of Vermont, 82 Innovation PI, 05405 Burlington, USA.

出版信息

EPJ Data Sci. 2024;13. doi: 10.1140/epjds/s13688-024-00458-1. Epub 2024 Mar 7.

Abstract

Higher-order networks are widely used to describe complex systems in which interactions can involve more than two entities at once. In this paper, we focus on inclusion within higher-order networks, referring to situations where specific entities participate in an interaction, and subsets of those entities also interact with each other. Traditional modeling approaches to higher-order networks tend to either not consider inclusion at all (e.g., hypergraph models) or explicitly assume perfect and complete inclusion (e.g., simplicial complex models). To allow for a more nuanced assessment of inclusion in higher-order networks, we introduce the concept of "simpliciality" and several corresponding measures. Contrary to current modeling practice, we show that empirically observed systems rarely lie at either end of the simpliciality spectrum. In addition, we show that generative models fitted to these datasets struggle to capture their inclusion structure. These findings suggest new modeling directions for the field of higher-order network science.

摘要

高阶网络被广泛用于描述复杂系统,在这些系统中,相互作用可以同时涉及两个以上的实体。在本文中,我们关注高阶网络中的包含关系,即特定实体参与某种相互作用,并且这些实体的子集也相互作用的情况。传统的高阶网络建模方法往往要么根本不考虑包含关系(例如超图模型),要么明确假设完全包含(例如单纯复形模型)。为了对高阶网络中的包含关系进行更细致的评估,我们引入了“单纯性”的概念和几种相应的度量。与当前的建模实践相反,我们表明,通过实证观察到的系统很少处于单纯性谱的两端。此外,我们表明,拟合这些数据集的生成模型难以捕捉其包含结构。这些发现为高阶网络科学领域提出了新的建模方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc69/11643508/ae1118dce7e2/nihms-1999545-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验