Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
Nature. 2022 Jun;606(7915):739-746. doi: 10.1038/s41586-022-04760-8. Epub 2022 Jun 1.
The sympathetic and parasympathetic nervous systems regulate the activities of internal organs, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically and functionally distinct subtypes. The first, which we call ambiguus cardiovascular (ACV) neurons (approximately 35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ambiguus cardiopulmonary (ACP) neurons (approximately 15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons. ACP neurons also innervate most or all lung parasympathetic ganglion neurons-clonal labelling shows that individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.
交感和副交感神经系统调节内脏器官的活动,但它们组成神经元和回路的分子和功能多样性在很大程度上仍然未知。在这里,我们使用逆行神经元追踪、单细胞 RNA 测序、光遗传学和生理实验来解析小鼠心脏副交感控制回路。我们表明,脑干神经节模糊核(Amb)中的心脏支配神经元由两种分子上、解剖上和功能上不同的亚型组成。第一种,我们称之为 Amb 心血管(ACV)神经元(每个 Amb 约有 35 个神经元),定义了经典的心脏副交感神经回路。它们选择性地支配心脏副交感神经节神经元的一部分,并介导压力感受器反射,在血压升高时减缓心率和房室结传导。另一种,Amb 心肺(ACP)神经元(每个 Amb 约有 15 个神经元)支配与 ACV 神经元支配的那些神经元混合且功能上无法区分的心脏神经节神经元。ACP 神经元还支配大多数或所有肺副交感神经节神经元——克隆标记显示单个 ACP 神经元支配两个器官。ACP 神经元介导潜水反射,即水浸后同时出现的心动过缓和支气管收缩。因此,心脏的副交感神经控制被组织成两个平行的回路,一个回路选择性地控制心脏功能(ACV 回路),另一个回路协调心脏和肺功能(ACP 回路)。这种对心脏控制的新理解对治疗心脏和肺部疾病以及阐明其他器官的控制和协调回路具有重要意义。