Manohar Neha, Stebe Kathleen J, Lee Daeyeon
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Macro Lett. 2017 Oct 17;6(10):1104-1108. doi: 10.1021/acsmacrolett.7b00392. Epub 2017 Sep 20.
Despite their wide potential utility, the manufacture of polymer-nanoparticle (NP) composites with high filler fractions presents significant challenges because of difficulties associated with dispersing and mixing high volume fractions of NPs in polymer matrices. Polymer-infiltrated nanoparticle films (PINFs) circumvent these issues, allowing fabrication of functional composites with extremely high filler fractions (>50 vol %). In this work, we present a one-step, room-temperature method for porous PINF fabrication through solvent-driven infiltration of polymer (SIP) into NP packings from a bilayer film composed of a densely packed layer of NPs atop a polymer film. Upon exposure to solvent vapor, capillary condensation occurs in the NP packing, leading to plasticization of the polymer layer and subsequent infiltration of polymer into the NP layer. This process results in a porous PINF without the need for energy-intensive processes. We show that the extent of polymer infiltration depends on the quality of solvent and the duration of solvent annealing as well as the molecular weight of the polymer. SIP can also be induced using a slightly poor solvent, which offers a great advantage of inducing SIP via liquid solvent annealing, eliminating potential hazards associated with solvent vapor annealing. The SIP process circumvents challenges associated with dispersing high concentrations of nanoparticles in a polymer matrix to prepare a nanocomposite film with high filler fraction. Thus, SIP is a potentially scalable method that can be used for the manufacturing of porous PINFs of a wide range of compositions, structures, and functionalities for applications in structural and barrier coatings as well as electrodes for energy storage and conversion devices.
尽管聚合物-纳米颗粒(NP)复合材料具有广泛的潜在用途,但制造具有高填料分数的此类复合材料面临重大挑战,因为在聚合物基体中分散和混合高体积分数的纳米颗粒存在困难。聚合物渗透纳米颗粒薄膜(PINF)规避了这些问题,能够制造出具有极高填料分数(>50体积%)的功能复合材料。在这项工作中,我们提出了一种一步法、室温制备多孔PINF的方法,即通过溶剂驱动聚合物渗透(SIP),使聚合物从由聚合物薄膜顶部的致密NP层组成的双层薄膜渗透到NP堆积中。暴露于溶剂蒸汽时,NP堆积中会发生毛细管冷凝,导致聚合物层增塑,随后聚合物渗透到NP层中。该过程产生了一种多孔PINF,无需耗能过程。我们表明,聚合物的渗透程度取决于溶剂质量、溶剂退火持续时间以及聚合物的分子量。使用略差的溶剂也可诱导SIP,这具有通过液体溶剂退火诱导SIP的巨大优势,消除了与溶剂蒸汽退火相关的潜在危害。SIP过程规避了在聚合物基体中分散高浓度纳米颗粒以制备具有高填料分数的纳米复合薄膜的挑战。因此,SIP是一种具有潜在可扩展性的方法,可用于制造各种组成、结构和功能的多孔PINF,用于结构和阻隔涂层以及储能和转换器件的电极等应用。