Suppr超能文献

能冷凝不饱和水蒸气并渗出水滴的两亲性纳米孔。

Amphiphilic nanopores that condense undersaturated water vapor and exude water droplets.

作者信息

Kim Baekmin Q, Vicars Zachariah, Füredi Máté, Escobedo Lilia F, Venkatesh R Bharath, Guldin Stefan, Patel Amish J, Lee Daeyeon

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Chemical Engineering, University College London, London WC1E 7JE, UK.

出版信息

Sci Adv. 2025 May 23;11(21):eadu8349. doi: 10.1126/sciadv.adu8349. Epub 2025 May 21.

Abstract

Condensation of water vapor in confined geometries, known as capillary condensation, is a fundamental phenomenon with far-reaching implications. While hydrophilic pores enable liquid formation from undersaturated vapor without energy input, the condensate typically remains confined, limiting practical utility. Here, we explore the use of amphiphilic nanoporous polymer-infiltrated nanoparticle films that condense and release liquid water under isothermal and undersaturated conditions. By tuning the polymer fraction and nanoparticle size, we optimize condensation and droplet formation. As vapor pressure increases, voids fill with condensate, which subsequently exudes onto the surface as microscopic droplets. This behavior, enabled by a balance of polymer hydrophobicity and capillarity, reveals how amphiphilic nanostructures can drive accessible water collection. Our findings provide design insights for materials supporting energy-efficient water harvesting and heat management without external input.

摘要

在受限几何结构中水蒸气的凝结,即毛细凝聚,是一种具有深远影响的基本现象。虽然亲水性孔隙能够在无能量输入的情况下使未饱和蒸汽形成液体,但冷凝物通常仍被限制在其中,限制了实际应用。在这里,我们探索了使用两亲性纳米多孔聚合物渗透纳米颗粒薄膜,该薄膜在等温及未饱和条件下会凝结并释放液态水。通过调节聚合物分数和纳米颗粒尺寸,我们优化了凝结和液滴形成过程。随着蒸气压增加,空隙中充满冷凝物,随后这些冷凝物会以微小液滴的形式渗出到表面。这种由聚合物疏水性和毛细作用平衡所促成的行为,揭示了两亲性纳米结构如何驱动可获取的水收集。我们的研究结果为支持无需外部输入的高效水收集和热管理的材料提供了设计思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f46/12094244/a693bb69f4fa/sciadv.adu8349-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验